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ABSTRACT 
 

THE STUDY OF (p, d) REACTIONS ON 13C, 11B, AND 
 10Be IN INVERSE KINEMATICS 

 
By 

 
Xiaodong Liu 

 
    

This work studied the one neutron transfer reactions on 13C, 11B, and 10Be in inverse 

kinematics using detectors with high angular and high energy resolution. The (  

reactions were performed using secondary beams of 

),dp

13C, 11B, and 10Be on polyethylene 

targets (CH2)n. The experiment was performed at the National Cyclotron 

Superconducting Laboratory (NSCL) at Michigan State University. Neutron 

spectroscopic factors have been extracted for the transfers from the ground states of 13C, 

11B, and 10Be to the ground states of 12C, 10B, 9Be and from the ground state of 13C to the 

first excited state of 12C. The theories of DWBA and ADBA were reviewed and the 

approximations of zero-range, finite range, and non-locality were examined. Sensitivities 

of the optical–model potentials in the extraction of the spectroscopic factor were 

analyzed. The results of this work indicated that a transfer reaction in inverse kinematics 

provides a unique tool for the study of the structures of the radioactive nuclei and that 

reliable spectroscopic factors must be extracted with a systematic and consistent 

approach using global optical-model potentials. 
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CHAPTER 1  

 
INTRODUCTION 

1.1 Motivation 

 
The study of nuclei far away from stability has been the focus of nuclear study in 

recent years. We want to know the extent to which the nuclear shell model theory is valid 

for nuclei beyond the stability limits. Such understanding is especially important since 

unstable nuclei are essential components in the nuclear synthesis process.  

Since the discovery of the shell model, which explains many structural properties of 

the nuclei, transfer reactions have been used to study the configuration of the valence 

nucleons. Spectroscopic factors (SF) are important quantities that tell us the structure of 

the single nucleon orbit. In this work, we define the spectroscopic factor as the ratio of 

the experimental cross section from the transfer reaction to the theoretical calculation 

based on a reaction model that assumes the orbital fully occupied by the transferred 

nucleon. Since unstable nuclei cannot be made into targets, the transfer reactions must be 

performed in inverse kinematics using rare isotope beams.  

Currently there are unanswered questions in the extraction of spectroscopic factors. In 

the reaction theory, which uses the Distorted-Wave Born Approximation, DWBA, a fast 

one-step direct process of less than 10-22 sec is assumed. Elastic scatterings are used to 

describe both the entrance and the exit channels. It is usually believed that an accurate 

optical-model potential, which is derived from the best fitting of the elastic scattering 
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data, would give the correct incoming and outgoing wave functions and hence the correct 

extraction of the spectroscopic factor. Unfortunately, such practice has failed to provide a 

consistent extraction of the spectroscopic factors in part due to the ambiguity in the 

parameters needed to describe the optical-model potential. In contrast, there are also 

arguments that superior results would be obtained if global optical-model potentials that 

describe a range of nuclei and incident energies are used instead. There are statements in 

literature that such an average optical-model potential tends to give more reasonable 

spectroscopic factors than individual potential [Sch67]. However, such statements have 

not been well quantified. One purpose of this thesis is to compare the different strategies 

and find a reliable method to extract consistent spectroscopic factors.   
Another goal of this work is to study the structure of deformed unstable nuclei such 

as 10Be via the (p,d) reaction. It was envisioned that this would become the starting point 

of a series of studies of the N=6 isotones in inverse kinematics. The valence neutron of 

10Be had been previously studied via the 9Be(d,p)10Be reaction. The extracted 

spectroscopic factors, however varied from 0.97 to 2.07, in some cases differing from the 

theoretical value of 2.35 based on the shell model. We want to know if there is new 

physics in 10Be that makes it different from the shell model expectation. Furthermore, 

understanding the structure of 10Be may help us to understand the structure of more 

neutron-rich isotopes of Beryllium such as 11Be. 

This is the first time that the secondary radioactive beam of 10Be was used to perform 

the (p,d) reaction in inverse kinematics. For these experiments, we used a high-angular 

and high-energy resolution detector, Large Area Silicon Strip Array (LASSA), to detect 
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the deuterons emitted in the reactions. In addition, we also measured (p,d) reactions on 

another N=6 isotone 11B as well as 13C. This letter reaction was used to obtain energy 

calibrations. High quality data were obtained in this reaction and used in our systematic 

studies to find a strategy to extract the spectroscopic factor.   

Various properties of the inverse kinematic reaction are analyzed in the next section. 

The theoretical background is presented in chapter 2. This latter chapter includes the 

description of the theoretical spectroscopic factor (Section 2.2) and of the reaction 

theories (Section 2.3). Specifically, the theories of distorted-wave Born approximation 

(DWBA) and adiabatic deuteron breakup approximation (ADBA) are introduced in 

Section 2.3.1 and Section 2.3.2 respectively. Detailed descriptions of the experimental 

setup are provided in chapter 3, which includes the descriptions of the various detectors 

and electronics. Chapter 4 describes the analyses of the deuteron spectra and the 

extraction of the angular differential cross sections. Theoretical calculations and the 

extraction of the spectroscopic factors are explained in chapter 5. Chapter 6 gives the 

summary of this thesis. 

 

1.2 Inverse Kinematics  

 
Nuclear reactions involving nucleon transfer between stable beams and target nuclei 

have been a very useful source of nuclear structure information, and many theoretical 

tools have been developed to extract spectroscopic information. However, for the study 

of radioactive nuclei far from the stable region, which has become the new focus of 

studies in nuclear astronomy and nuclear structure beyond the shell model in recent years, 
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inverse kinematics becomes necessary since the radioactive nuclear targets, especially 

those with a very short half-life, are usually not available. Thus, transfer reactions 

induced by radioactive beams on proton and deuteron targets have great potential for 

probing single-particle structures in new regions [For99, Win01, Reh98, Oga99].  

One advantage of the inverse kinematic reaction is that it is relatively easy to cover 

the forward scattering angle in the center of mass. In the normal kinematic reaction, 

where the light projectile bombards the heavy target, the small scattering angle in the 

center of mass can only be covered at the most forward angle in the laboratory frame. 

Figure 1.1(a) shows the velocity diagram for the (p,d) reaction in normal kinematics,   

where  is the velocity of the center of mass in the laboratory frame; V  and 

 are the deuteron velocity in the laboratory frame and in the center of mass; 

cmV0
lab

d

cm
dV labθ  

and cmθ  are deuteron emitted angles in the laboratory and in the center of mass. In the 

inverse kinematic reaction, as shown in Figure 1.1(b), the deuteron scatters backward in 

the center of mass. Smaller cmθ  can be obtained at relatively large labθ . Figure 1.2 

shows the relations between the deuteron emitted angles in the laboratory frame and the 

emitted angles in the center of mass for the reactions of p(13C,d)12C g.s. (solid line) and 

13C(p,d)12C g.s. (dashed line) at the equivalent bombing energy respectively. The 

detector in the inverse kinematic reaction covers smaller angles in the center of mass than 

that in a normal kinematic reaction at the same laboratory angle. 

One disadvantage of inverse kinematics is the kinematic broadening. Figure 1.3 

shows the kinematic broadening vs. the emitting angle in the laboratory frame. The solid 

line presents the inverse kinematic reaction of p(13C,d)12C at bombing energy of 47.9 
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MeV per nucleon; the dashed line stands for the 13C(p,d)12C reaction at a proton energy 

of 48.3 MeV. Except for the very forward angles, the kinematic broadening is much more 

severe for the inverse kinematic reaction than the normal kinematic reaction. For 

example, the kinematic broadening increases dramatically from 650 keV at 30 degree to 

1.27 MeV at 35 degree Therefore in this reaction, deuterons should not be detected 

beyond 35 degree in the laboratory frame. For the forward angles, detectors with high 

angular resolution as well as high energy resolution are required. Silicon strip detectors 

are widely employed to achieve high angular resolution and high energy resolution. The 

techniques of using these detectors will be discussed in Section 3.3. 
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 Figure 1.1: Velocity diagrams for normal kinematics (a) and inverse kinematics (b) as in 
(p,d) reactions. V  is the velocity of the center of mass in the laboratory frame; V  and 

 are the deuteron velocities in the laboratory frame and the center of mass, respectively; 

cm
0

lab
d

cm
dV

labθ  and cmθ  are the emitted angles in the laboratory frame and the center of mass, 
respectively.  
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Figure 1.2: The deuteron emitted angles in the center of mass vs. emitted angles in the 
laboratory frame. The solid line presents the inverse kinematic reaction of p(13C,d)12C 
(g.s.) at bombing energy of 47.9 MeV per nucleon; the dashed line stands for the reaction 
of 13C(p,d)12C (g.s.) at proton energy of 48.3 MeV. 
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Figure 1.3: Kinematic broadening vs. angles in the laboratory frame. The solid line 
presents the inverse kinematic reaction of p(13C,d)12C at bombing energy of 47.9 MeV 
per nucleon; the dashed line stands for the reaction of 13C(p,d)12C at proton energy of 
48.3 MeV. 
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CHAPTER 2  

 
THEORETICAL DESCRIPTION 

 
2.1 Overview 

 
The main goal of this thesis is the extraction of the neutron spectroscopic factors from 

measurements. The experimental spectroscopic factor is defined as the ratio of the 

experimental differential cross section to the calculated differential cross section based on 

a reaction model that assumes the relevant orbit is fully occupied. The extraction of the 

experimental differential cross sections measured in this thesis will be described in 

Chapter 4.  This chapter mainly describes how the theoretical differential cross sections 

are calculated. The theoretical nucleon spectroscopic factor will be introduced in Section 

2.2. The most widely used models, the distorted-wave Born approximation (DWBA) and 

the adiabatic deuteron breakup approximation (ADBA), will be discussed in Section 2.3. 

The effects of different input parameters including the choices of optical-model potentials 

in DWBA will be covered in the subsections of Section 2.3. At the end of this chapter, a 

list of standard input parameters for the DWBA and ADBA calculations will be 

proposed. 
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2.2 Theoretical Spectroscopic Factor 

 
In the theory of the shell model, the valence nucleon in the nucleus is described as a 

single-particle state of a particular orbit. Each orbit is assigned the number n, l, and j 

corresponding to the node number, the orbital momentum, and the total spin momentum 

of the nucleon. The assumption that the nucleon occupies a pure single-particle state is an 

idealization, which is true only in few cases in real nuclei. Due to the interactions among 

other nucleons, each nucleon may occupy several single-particle states. The occupation 

of a nucleon in a pure single-particle state is called the spectroscopic factor, which 

contains the information of the nuclear structure and how well the shell model theory 

describes the real nuclei. Thus the nucleon spectroscopic factor is among the most 

fundamental tests of shell model theory [Ban85]. 

In a nucleus composed of A nucleons, the spectroscopic factor can be deduced from 

the expansion of the wave function )(Aψ  in terms of a summation over the complete set 

of single-particle states )( nnlj rvφ  and the states )(Bψ  of the residual core nucleus B is 

composed of A-1 nucleons [Gle04]: 

MA
JA

jlB
JBnnljnjln

MA
JA

BrBArB ])()([ˆ)',(),(
'

'∑ Α= ψφβψ vv                  (2.2.1) 

where  is an antisymmetrization operator, Α̂ )',( BAnljβ  are coefficients of fractional 

parentage and their values depend on the detailed structure of the nuclear wave function.  
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The square bracket denotes vector coupling: 
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JAJBnnlj ∑= ψφψφ vv                  (2.2.2)  

The spectroscopic factor for a specific single particle state (nlj) is: 

)',(2 BAS nljnlj β=                                                (2.2.3) 

For the pickup (p,d) reaction, the spectroscopic factor is related to the experimental 

angular differential cross section and the theoretical calculation by:    

theory
nlj d

dS
d

d








Ω
⋅=

Ω
)()( θσθσ                                       (2.2.4) 

where 
theoryd

d








Ω
)(θσ is calculated assuming the neutron in the exact state (nlj). The 

theoretical calculations are performed either in the distorted-wave Born approximation 

(DWBA) theory or in the adiabatic deuteron breakup approximation (ADBA) theory. The 

introduction of the theories will be in Section 2.3. In this work, all the theoretical 

calculations for (p,d) and (d,p) reactions are performed using the code TWOFNR, which 

was initially developed by M. Igarashi in 1977 [Iga77]. This code is relatively easy to use 

since it supplies multiple options with default values for every step and component in the 

calculations. All the inputs, including the parameters and option choices, are converted 

automatically into a standard input file for TWOFNR by a partner program FRONT. The 

input parameters and options are listed in Table 2.1. For example, the integration ranges 

and the number of partial waves can be specified by the user or the default values can be 

adopted. The user can choose the global optical-model potentials for proton and deuteron 

or specify the parameters for individual potential. When the ADBA theory is employed, 

the Johnson-Soper adiabatic potential for deuteron can be constructed using three 
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different nucleon-nucleus potentials. For the application of JLM potential, users can input 

their own parameters for the target density and potential scaling factors following the 

prompts of the program. There is a switch either to zero-range approximation or to finite-

range approximation. If the finite-range approximation is chosen, the finite-range factor 

can be the default value or be specified. The same strategy is also applied to the options 

of neutron binding potential, the vertex constant, and non-locality correction.      

We choose to use TWOFNR because there are many default options available and it 

is easier to perform many calculations in a systematic study. Another popular finite-range 

DWBA code is DWUCK5 [Kunz], which performs finite-range calculations with 

deuteron wave function instead of the finite-range approximation in TWOFNR. We 

compared them in Section 2.3.1.3 and found that the results from these two programs are 

very close to each other for the same input parameters (see Figure 2.19). We believe 

essentially the same results will be calculated if different codes than TWOFNR are used.  
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Table 2.1: An overview of the input parameters and options for TWOFNR 

 
Integration ranges Specified or default value (30 fm in 300 steps)  

Number of partial waves Specified or default value (70)  

Proton potential 

Choose built-in options of global optical-model potentials: 
          Bechetti-Greenlees;         
          Chapel-Hill 89 (CH89); 
          Perey & Perey;                 
          Menet; 
          JLM; 
Or specified parameters for Vr, rv, av, Wv, Ws, rw, aw, Vso, 

rso, aso, and RC 

Deuteron potential 

Choose built-in options of global optical-model potentials: 
          Lohr-Haeberli;                 
          Perey & Perey; 
          Daehnick;                         
          Johnson-Soper adiabatic (ADBA); 
Or specified parameters for Vr, rv, av, Wv, Ws, rw, aw, Vso, 

rso, aso, and RC 

Johnson-Soper 
adiabatic potential 

Choose built-in options of global optical-model potentials: 
          Bechetti-Greenlees;         
          Chapel-Hill 89 (CH89); 
          JLM; 

Target density 
for JLM potential 

Choose built-in options: 
          Negele form; 
          Specify rms radius;  
          Modified Harmonic oscillator form; 

JLM potential scaling λ Specified or default values (λv=1.0, λw=0.8) 

Neutron binding potential 
Specified  
or default values (r0=1.25 fm, a0=0.65 fm, Vso=6 MeV) 

Zero-range 
approximation Use or not 

Finite-range 
approximation 

Use or not 
If use, finite range factor can be specified or choose default 
value of 0.7457 fm 

Vertex constant  2
0D Specified or default value of 15006.25  32 fmMeV ⋅

Non-locality correction 
Use or not.  
If use, non-locality range can be specified or choose 
default value (0.85 fm for proton; 0.54 fm for deuteron).  
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2.3 Reaction Theory 

 
2.3.1 Distorted-Wave Born Approximation (DWBA)  

 
Transfer reactions have been an important tool in the study of nuclear structure. The 

results obtained from the studies of the pickup A(p,d)B and stripping B(d,p)A reactions,  

involving single neutron transfer, help to validate the nuclear shell model by identifying 

the single-particle states. To a large extent, the (p,d) reaction can be understood as one in 

which the neutron is removed from a single particle state of the target nucleus A. In the 

(d,p) reaction the neutron in the deuteron is deposited to a single-particle state of the final 

nucleus A. Thus, the theoretical description of the (d,p) reaction is similar to that of the 

(p,d) reaction.  

In the pickup reactions, A(p,d)B, where A=B+n, a neutron in a single-particle state in 

A, is picked up by the incident proton to form the deuteron. The process is illustrated in 

Figure 2.1. The transition amplitude for this reaction under the distorted-wave Born 

approximation (DWBA) theory is written as [Gle04]: 

2/12/1

)2/1()1)(2/1)(2/1(

)12(

)(

nlj
ml
l

l

jl
nmjmldnp
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JBjJA
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            (2.3.1) 

 30



where  
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where A
v

 and B
v

 refer to the nucleon coordinates and spins of nucleus A and B; nr
v  and 

 are the coordinates of neutron and proton; prv nr
v  and R

v
 are the relative and center-of-

mass coordinates of the deuteron; )()(
pp r,pk vv+χ

,(( kdd

 is the distorted-wave function 

describing the elastic scattering of the incoming proton by the proton optical-model 

potential U ; the distorted-wave function p )R*) vv−χ  describes the elastic scattering 

of the emitted deuteron by the deuteron optical-model potential U ; d )(A
v

ψ  is the wave 

function of the target nucleus A; )(B
v

ψ  is the wave function of the core nucleus B; and 

)(rd
vφ  is the internal wave function of the deuteron. The term V  is called 

the residual interaction, where V  is the interaction between the proton and neutron, 

and  is the interaction between the proton and the remaining B nucleus. The term 

pUV pB −pn +

pn

pB

,n

V

(r )nnlj σφ vv  is the neutron wave function in specific single-particle state (nlj), which 

is also called the neutron form factor: 

[ ]mjnnnlnn
m
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Assuming  and U  approximately cancel each other in Equation 2.3.2 pBV p [Aus70, 

Sat71], the becomes  ), dl
kB
v
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The cross section is 
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                    (2.3.6) 

where md and mp are the reduced masses.  

In order to obtain the distorted-wave functions of  and , we need the 

optical-model potentials for the deuteron and proton. In the next section, the choices and 

detailed descriptions about the optical-model potentials will be discussed.   

*)(−
dχ

)(+
pχ
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Figure 2.1. The target nucleus A is composed of the core nucleus B and one neutron n. 
The proton picks up a neutron to form the deuteron. O is the center of mass of nucleus B 
and nr

r
 points to the neutron; O’ is the center of mass of nucleus A; rr  and rp

r are the 
proton coordinates relative to the neutron and the center of mass of nucleus A, 
respectively. R

r
 is the coordinate of the deuteron center relative to nucleus B. 
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2.3.1.1 Optical-Model Potentials 

 
2.3.1.1.1 Overview 

 
The Schrödinger equation of the collision system of a + b can be written as: 

 0)( =Ψ− EH                                                     (2.3.7) 

where H includes the intrinsic energy H0, the kinetic energy T, and the potential U 

between a and b: 

UTHH ++= 0                                                  (2.3.8) 

The Schrödinger equation is separable into the nuclear intrinsic coordinates and relative 

coordinates so that the solution ψ can be written as a product of the nuclear intrinsic 

wave function baψψ  and a relative wave function )(rvφ , which satisfies the optical-

model Schrödinger equation: 

0)()( =−+ rEUT vφ                                              (2.3.9) 

Since U depends only on the relative coordinates of the two nuclei, it produces no change 

in the nuclei and describes only the elastic scattering. As the nucleon force is short-

ranged, and since the density ρ of nucleons in the nucleus is fairly constant in the interior 

and falls smoothly to zero at the nuclear surface, it is reasonable to assume that U has a 

radial shape that is similar to the density. Usually the optical potential is expressed in the 

Woods-Saxon form [Woo54]: 
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where the Woods-Saxon shape function  is : ),,( kk aRrf
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Here  is the radius parameter and  is the diffuseness parameter; V  and W  are the 

depths of the real and imaginary potentials, respectively; Ws is the depth of surface term 

of the imaginary potential.  Vso and Wso are the depths of the real and imaginary parts of 

the spin-orbit potentials; 

kr ka v v

L
v

 is the orbital angular momentum of the relative motion of the 

scattered particle; and σv  is the spin operator. VC is the Coulomb interaction, which is 

taken for a uniformly charged sphere of radius RC with different expressions inside and 

outside the radius RC .   
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2.3.1.1.2    Global Optical-Model Potentials 

 
In principle, all the parameters of the optical-model potential can be obtained by 

fitting them to the experimental data of the elastic scattering. For the best fit to individual 
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nucleus at specific energy, all parameters could be optimized. However, the parameters 

of the optical potential usually vary smoothly with energy and are similar for neighboring 

nuclei. Thus global optical potentials could be obtained by fitting a group of nuclei with a 

total of N points in a certain energy range by minimizing : 2χ

2

1 exp
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χ                                     (2.3.13) 

where thσ and expσ  are the calculated and experimental values of the cross sections at an 

angle of iθ  and expσ∆ is taken to be the experimental error; N is the number of data 

points.  

Over the years, many global optical potentials have been developed for both protons 

and deuterons. In the following sections, we discuss mainly those potentials which have 

been provided as options for TWOFNR [Iga77] that we have used to calculate the 

theoretical differential cross sections.  

 

2.3.1.1.3 Proton Global Optical-Model Potentials 

 
In this section, we introduce three sets of proton global optical-model potentials 

developed by Bechetti-Greenlees [Bec69], Menet [Men71], and Perey & Perey [Per76]. 

The Becchetti-Greenlees [Bec69] global proton potential has been developed for A>40 

nuclei and proton energies up to 50 MeV. Menet [Men71] developed a global proton 

potential for 12<A<208 nuclei and proton energies from 30 MeV to 60 MeV. The global 

proton potentials developed by Perey & Perey [Per76] are good for 30<A<100, and 

 36



proton energies up to 20 MeV. The parameters of the above three global optical 

potentials are listed in Table 2.2.   

Figure 2.2 shows the real (upper panel of figure) and imaginary (lower panel) global 

proton potentials on 13C at proton energy of 12.5 MeV. These potentials have very 

similar shapes and depths in the surface regions of the real parts, which dominate the 

scattering at the forward angles. However, there is a lot of difference among the 

imaginary parts, which scatter more strongly at large angles. Figure 2.3 shows the 

calculations based on the above global potentials and the comparison to the proton elastic 

scattering data on 13C at an incident energy of 12.5 MeV [Wel78]. The calculation by 

Menet potential gives a higher cross section, and the potentials of Perey & Perey and 

Bechetti-Greenlees give similar cross sections up to 56 degree in the center of mass.   

Figure 2.4 shows the real (upper panel of the figure) and imaginary (lower panel) 

global proton potentials on 13C at proton energy of 30.95 MeV. These potentials also 

have similar shapes and depths at the surface regions of the real parts. The imaginary 

parts are different.  Figure 2.5 shows calculations based on the above global potentials 

and the comparison to the proton elastic scattering data on 13C at an incident energy of 

30.95 MeV [Bar88].   The calculations agree with each other rather well at the forward 

angles (less than 10° in the center of mass) and start to differ from each other for angles 

larger than 15° in the center of mass. We see that, at higher energy, the potentials of 

Menet and Bechetti-Greenlees give similar results up to 80° and the potential of Perey & 

Perey gives lower cross section compared to others. 

Based on the above comparisons, we see that the proton global optical-model 

potentials give consistent calculations at forward angles, less than 10°. They give 
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relatively good fitting to the data in the region from 10° to 40°. Since the extraction of a 

spectroscopic factor is mostly determined by the reaction in forward angles, proton global 

potentials may provide a reasonable approach for describing the elastic scattering 

channel. In Section 2.3.1.1.5 and 2.3.1.1.6, we will introduce, respectively, potentials of 

CH89 and JLM, which improve the accuracy of the proton potential based on the folding 

model and nuclear matter approaches.  
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Table 2.2:  The parameters of global proton potentials 

 
 

Potentials 
 
Parameters 

Bechetti-
Greenlees  
(proton)  
[Bec69] 

Menet 
(proton)  
[Men71] 

Perey & Perey 
(proton)  
[Per76] 

A A>40 12<A<208 30<A<100 
E E<50 MeV 30<E<60 MeV E< 20 MeV 

vV  

3/14.0

0.24

32.00.54

−⋅+

−
+

−

AZ
A

ZN
E

 

3/14.0

4.26

22.09.49

−⋅+

−
+

−

AZ
A

ZN
E

 

3/14.0

27

55.03.53

−⋅+

−
+

−

AZ
A

ZN
E

 

vr  1.17 1.16 1.25 

va  0.75 0.75 0.65 

vW  Max 
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Figure 2.2: Proton global optical-model potentials of 13C at incident energy of 12.5 MeV.   

 

 

 

 40



 

 

 

 

 

 
Figure 2.3: Calculations by different global optical-model potentials for the reaction of 
13C(p,p)13C (g.s.) at incident energy of 12.5 MeV compared with the data [Wel78]. 
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Figure 2.4: Proton global optical-model potentials of 13C at incident energy of 30.95 

MeV.   
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Figure 2.5: Calculations by different global optical-model potentials for the reaction of 
13C(p,p)13C (g.s.) at incident energy of 30.95 MeV compared with the data [Bar88]. 
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2.3.1.1.4 Deuteron Global Optical-Model Potentials  

 
There are three widely-used deuteron global optical-model potentials: Lohr-Haeberli 

[Loh74], Perey & Perey [Per76], and Daehnick [Dae80].  These three potentials are 

available as options in the code of TWOFNR [Iga77]. 

The Lohr-Haeberli deuteron global potential is for nuclei with A>40 and for deuteron 

energies from 8 MeV to 13 MeV; the Perey & Perey deuteron global potential is for 

nuclei with Z≥12 and deuteron energies from 12 MeV to 25 MeV; the Daehnick deuteron 

potential spans the energy range from 11.8 MeV to 90 MeV and includes nuclei ranging 

in mass from 27Al to 238Th. The parameters of the above three global optical-model 

potentials are listed in Table 2.3. 

As a comparison, Figure 2.6 shows the three global deuteron potentials of 12C at 

incident deuteron energy of 11.8 MeV. Figure 2.7 shows the elastic scattering 

calculations based on the above global potentials, together with the experimental data at 

incident energy of 11.8 MeV [Fit67]. Unlike Figure 2.3 and Figure 2.5, Figure 2.6 plots 

the ratios of scattering differential cross section divided by the Rutherford differential 

cross section. The calculations agree with each other at the forward angles (less than 25°), 

but there exist slight deviations from the data.   

Figure 2.8 shows the three global deuteron potentials on 12C at incident deuteron 

energy of 34.4 MeV. Figure 2.9 shows the elastic scattering calculations with the 

experimental data at 34.4 MeV [New67]. The calculations agree with each other within 

the standard error of 5.3% at the forward angles (less than 20°), and they fit the elastic 

scattering well up to 36° in the center of mass.   
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Based on the above comparisons, we see that the present deuteron global optical-

model potentials describe the deuteron elastic scattering better at higher energy than at 

lower energy and at smaller scattering angles better than at larger scattering angles. At 

higher energy, The Daehnick potential gives better fitting than others, so we choose 

Daehnick deuteron potential in our DWBA analyses. For the ADBA, we use the adiabatic 

deuteron potential that will be introduced in Section 2.3.2. 
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Table 2.3: Deuteron global parameters. N=neutron number, E=deuteron laboratory 

energy in MeV. For Daehnick potential, 2)
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Figure 2.6: Deuteron global optical-model potentials of 12C at incident deuteron energy 
of 11.8 MeV. 
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Figure 2.7: Calculations by different global optical-model potentials for the reaction of 
12C(d, d)12C (g.s.) at incident energy of 11.8 MeV compared with the data [Fit67]. 
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Figure 2.8: Deuteron global optical-model potentials of 12C at incident deuteron energy 
of 34.4 MeV.  
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Figure 2.9: Calculations by different global optical-model potentials for the reaction of 
12C(d, d)12C (g.s.) at incident energy of 34.4 MeV compared with the data [New67]. 
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2.3.1.1.5     Nucleon-Nucleus Optical-Model Potential  

 
The global optical-model potentials discussed above are derived from the fitting to 

the elastic scattering data in particular mass and energy regions. One consequence is that 

the derived global optical-model potentials cannot cover all the nuclei over a wide energy 

region. Thus, derivation of an optical-model potential using a much more extensive 

database of elastic scattering than previously used is desirable.  A parameterization of the 

nucleon-nucleus optical-model potential based on data for A from 40 to 209, proton 

energies from 16 to 65 MeV and neutron energies from 10 to 26 MeV, was developed by 

R. L. Varner et. al. [Var91]. This parameterization, which is called Chapel-Hill 89 

(CH89), is based on the current understanding of the basis of the optical potential, such as 

the folding model and nuclear matter approaches instead of the determination of optical-

model potentials phenomenologically. The extensive database includes nearly 300 

angular distributions (9000 data points) of proton and neutron differential cross sections 

and analyzing powers, which is significantly more accurate and complete than previous 

analyses [Per76, Men71, Bec69].  

This parameterization adapts the basic Woods-Saxon form of Equation 2.3.10 but 

some parameters have slight modifications. One special feature of the parameterization of 

CH89 is that, based on the parameterization of nuclear charge radii [Mye73], offset 

values are added to the conventional radius parameters:     

)0(3/1)0(3/1 , wwwvvv rArRrArR +=+=  

)0(3/1)0(3/1 ,
cccsososo rArRrArR +=+=                        (2.3.14) 
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where rv
(0) , rso

(0) , rw
(0) , and rc

(0) are offset radius of the real, imaginary, spin-orbit, and 

Coulomb potentials. The other special feature of CH89 is that the depths of the potential 

have more complex dependence on the energy and proton-neutron number.  

ectv VEE
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where ‘+’ is used for protons and ‘–’ for neutrons. The parameters used in potential CH89 

are listed in Table 2.4. 

Figure 2.10 shows the shapes of CH89 proton potentials on 13C at incident energy of 

12.5 MeV. The global potentials of Menet and Perey & Perey are plotted together for the 

convenience of comparison. Figure 2.11 shows the calculations for proton elastic 

scattering on 13C at incident energy of 12.5 MeV using the potentials of Menet, Perey & 

Perey, and CH89. The potential CH89 gives better fitting to the data.    

Figure 2.12 shows the shapes of proton potentials on 13C for CH89, Menet, and Perey 

& Perey at incident energy of 30.95 MeV. The surface regions of the real parts are close 

to each other. Figure 2.13 shows the calculations for proton elastic scattering on 13C at 
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incident energy of 30.95 MeV employing the potentials of Menet, Perey & Perey, and 

CH89. It is obvious that the potential CH89 gives better fitting to the data. Based on the 

above comparisons, we adopt the potential of CH89 in our calculation in a wide energy 

region. 
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Table 2.4: Parameters for the global nucleon-nucleus optical-model potential of CH89 
[Var91] 

 

Parameters Value Parameters Value 

V0 52.9 MeV aso 0.63 fm 

Vt 13.1 MeV Wv0 7.8 MeV 

Ve -0.299 Wve0 35 MeV 

rv 1.250 fm Wvew 16 MeV 

rv
(0) -0.225 fm Ws0 10.0 MeV 

av 0.690 fm Wst 18 MeV 

rc 1.24 fm Wse0 36 MeV 

rc
(0) 0.12 fm Wsew 37 MeV 

Vso 5.9 MeV⋅fm2 rw 1.33 fm 

rso 1.34 fm rw
(0) -0.42 fm 

rso
(0) -1.2 fm aw 0.69 fm 
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Figure 2.10: Comparison of the CH89 proton potentials of 13C with the proton potentials 
of Menet and Perey & Perey at incident energy of 12.5 MeV. 
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Figure 2.11: Calculations for proton elastic scattering on 13C at incident energy of 12.5 
MeV using the potentials of Menet, Perey & Perey, and CH89 compared with the data 
[Wel78]. 

 

 

 

 

 56



 

 

 

 

 

Figure 2.12: Comparison of the CH89 proton potentials of 13C with the proton potentials 
of Menet and Perey & Perey at incident energy of 30.95 MeV. 
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Figure 2.13: Calculations for proton elastic scattering on 13C at incident energy of 30.95 
MeV using the potentials of Menet, Perey & Perey, and CH89 compared with the data 
[Bar88]. 
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2.3.1.1.6     JLM Optical-Model Potential   

 
Instead of fitting elastic scattering data phenomenologically, the optical-model 

potential could be determined from nuclear matter theory, which may supply more 

microscopic understanding of the nuclear interior and overcome the uncertainties of the 

geometry parameters in the global optical-model potentials described previously. One 

such optical-model potential developed via realistic nucleon-nucleon interaction and 

nuclear matter density is the JLM (the initials of the three authors: Jeukenne, Lejeune, 

and Mahaux)  potential [Jeu77].  

The JLM potential started from the Brueckner-Hartree-Fock approximation and 

Reid’s hard core nucleon-nucleon interaction, which was folded with the nuclear matter 

density. The complex optical-model potential in infinite nuclear matter is parameterized 

for nuclei with mass numbers 12 208≤≤ A  and for energies E up to 160 MeV.  For the 

nucleus whose nuclear matter densities are available experimentally, the JLM potentials 

may model the shape of the optical potentials more accurately than the phenomenological 

ones.  

The real and imaginary JLM potentials are expressed as: 

∫ 
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where b = 1.2 fm, corresponding to the range of effective interaction [Gil71]; the scaling 

factors vλ  and wλ  is 1.0 and 0.8 for the real and imaginary potentials, respectively 
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[Pet85]; the VE(r) and WE(r) are the real and imaginary nucleon potentials derived in the 

local density approximation (LDA). LDA implies that the value of the potential at each 

point of the nucleus is the same as in a uniform medium with the same local density. In 

the case of a neutron with energy E, the LDA potential in uniform nuclear matter with 

density ρ and neutron excess δ is given by: 

),(),(),( 10 EVEVEVn ρδρρ ⋅+=   

),(),(),( 10 EWEWEWn ρδρρ ⋅+=                             (2.3.20) 

where the neutron excess is measured by the asymmetry parameter δ   
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ρρ
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+

−
=                                                   (2.3.21) 

There are different models to parameterize the density distributions of protons and 

neutrons. One that is used in this work is the modified harmonic-oscillator model [Dej74] 

as defined by: 
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The parameters  and α can be read from Ref. [Dej74]. The density a 0ρ  is [Neg70]: 

ZorNk
CaC

kk =
+

= ,
)/1(4

3
2223

)(
0

ρρρ ππ
ρ                  (2.3.23) 

where aρ= 0.54 fm, and 

)()0206.0978.0( 3/13/1 fmAAC +=ρ                              (2.3.24) 

The quantity V ),(0 Eρ  is parameterized to 
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The coefficients aij are listed in Table 2.5. The parametric form of the imaginary potential 
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Where D = 600 MeV 2, , the coefficients d)625032228.510()( 2ρρρρε −+−=F

),(1 E

ij  are 

listed in Table 2.5. The function V ρ  and W ),(1 Eρ have the forms: 
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where m~  adapts the form:  
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The coefficients cij are listed in Table 2.5. The m  is calculated by  

m
mmm ~

*⋅
=                                                     (2.3.29) 

where the effective mass  is defined as *m
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N(ρ,E) is the auxiliary function in Brueckner-Hartree-Fock approximation [Jeu77]. The 

real part of N is parameterized by:  

)(Re 1
3

1,
MeVEbN ji
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ji

−

=
Σ= ρ                                     (2.3.31) 

with coefficients bij listed in Table 2.5. The imaginary part of N is parameterized by 
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where F=1.0 MeV. The coefficients fij are listed in Table 2.5. 

In the case of a proton with energy E in the additional presence of a Coulomb field 

Vc, the corresponding real and imaginary potentials are given by 

),(),(),(),( 10 CCp VEVEEVEV −−∆+= ρδρρρ   

),(),(),(),( 10 CCp VEWEWEWEW −−+= ρδρρρ              (2.3.33) 

where  

),(),(),( 00 EVVEVE CC ρρρ −−=∆   

),(),(),( 00 EWVEWEW CC ρρρ −−=                         (2.3.34) 

Figure 2.14 shows the JLM proton potentials on 13C at incident energy of 12.5 MeV. 

For comparison, the global potentials of Menet and CH89 are plotted in the same figure. 

The surface regions of the real potentials are similar to each other but the interior part of 

the real JLM potential is deeper.     
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Figure 2.15 shows the elastic scattering calculations based on the above potentials. 

All of these calculations are quite similar at the forward angles (less than 10°). The 

calculated angular distribution by the JLM potential gives good fitting up to 125°.  

Figure 2.16 shows the JLM proton potentials on 13C at the incident energy of 30.95 

MeV together with the global potentials of Menet and CH89. Again, the surface regions 

of the real potentials are similar to each other but the interior part of the real JLM 

potential is deeper. In addition, contrary to the other potentials, the imaginary JLM 

potential in the nuclear interior is positive.   

Figure 2.17 shows the elastic scattering calculations based on these potentials. The 

calculated angular distribution by the JLM potential looks similar to that by the CH89 

potential. All of these potentials give quite similar results at the forward angles.  

Based on the above comparison, we can see that both the JLM and CH89 potentials 

are better than other global optical-model potentials; the JLM is even better than CH89. 

The disadvantage of the JLM potential is that it requires the information of nuclear 

density. When the nuclear density is available, we perform calculations with both the 

JLM and CH89 potentials; if the nuclear density is not available, only the CH89 is used. 
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Table 2.5: Parameters for JLM potentials 

 

(a)   aij for V0(ρ,E)  (b)   dij for W0(ρ,E) 
i      

j 
j = 1 j = 2 j = 3 

i      

j 
j = 1 j = 2 j = 3 j = 4 

i = 1 -974 11.26 -0.0425 i = 1 -1483 37.18 -0.3549 0.001119 

i = 2 7097 -125.7 0.5853 i = 2 29880 -931.8 9.591 -0.0316 
i = 3 -19530 418 -2.054 i = 3 -212800 7209 -77.52 0.2611 

i = 4 512500 -17960 198 -0.6753  
 

(c)   cij for ),(~ Em ρ  (d)   fij for ImN 
i      

j 
j = 1 j = 2 j = 3 

i      

j 
j = 1 j = 2 j = 3 j = 4 

i = 1 4.557 -0.005291 0.6108E-5 i = 1 546.1 -11.2 0.1065 -3.541E-4 

i = 2 -2.051 -0.4906 0.001812 i = 2 -8471 230.0 -2.439 0.008544 

i = 3 -65.09 3.095 -0.01190 i = 3 51720 -1520 17.17 -0.06211 

 

i = 4 -114000 3543 -41.69 0.1537  

(e)   bij for ReN 
i      

j 
j = 1 j = 2 j = 3 

i = 1 360.1 -5.224 0.02051 

i = 2 -2691 51.3 -0.247 
i = 3 7733 -171.7 0.8846 
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Figure 2.14: Comparison of the JLM proton potentials of 13C with the proton potentials 
of Menet and CH89 at incident energy of 12.5 MeV. 
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Figure 2.15: Calculations for the 13C(p,p)13C (g.s.) reaction by JLM, Menet and CH89 
potentials at incident energy of 12.5 MeV compared with the data [Wel78]. 
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Figure 2.16: Comparison of the JLM proton potentials of 13C with the proton potentials 
of Menet and CH89 at incident energy of 30.95 MeV. 
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Figure 2.17: Calculations for the 13C(p,p)13C (g.s.) reaction by JLM, Menet and CH89 
potentials at incident energy of 30.95 MeV compared with the data [Bar88].  
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2.3.1.2    Zero-Range Approximation 

 
The DWBA expression for the transition amplitude in Equation 2.3.2 involves a 6-

fold integration over nr
r and prr after the integration of the nuclear coordinates B. The 6-

fold integration has been discussed by [Aus64] and Sawaguri [Saw67]. To simplify the 

integration, it is usually assumed that the transition amplitude receives contributions only 

from the region where the coordinates of the proton and neutron coincide so that we have 

the zero-range approximation:  

)()()()( 0 rDrrVrD dpn
vvvv δφ =≡                                      (2.3.35) 

The value of  can be obtained by integrating this equation over 0D rv :   

drrrVrD dpn∫= )()(2
0

vv φ                                          (2.3.36) 

and the vertex constant  is [Lee64, Knu75] : 2
0D

322
0 25.15006 fmMeVD ⋅=                                      (2.3.37) 

When the zero-range approximation is made, the coordinates are transformed to: 
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2.3.1.3    Finite-Range Approximation 

 
In general, deuteron has finite range of radius and the interaction between proton and 

neutron exists in a finite range. The zero-range approximation over-emphasizes 

contributions coming from the nuclear interior. A means has been found to approximate 

the finite-range effect so that it reduces to the form of the zero-range approximation 

multiplied by a radial dependent factor )(RΛ  [But64].   
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where β is the finite range parameter with the value of 0.7457 [Knu75],  is the 

deuteron binding energy, U  and U  are the deuteron and proton optical potentials, and 

 is the neutron potential that binds the neutron to the core nucleus B.  

dE

d p

nV

Figure 2.18 shows the comparison of the DWBA calculations in this finite-range 

approximation (solid line) and zero-range approximation (dashed line) for the reaction of 

13C(p,d)12C at proton energies of 15 MeV and 48.3 MeV. The calculations use CH89 as 

the proton potential and Daehnick global potential for the deuteron. Thus finite-range 

approximation increases the cross section by 4.8% at the peak region for the proton 

energy of 15 MeV. For incident proton energy at 48.3 MeV, the enhancement is 8.9% at 
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forward angles. Thus the effects, although not negligible, are not very large for the 

reactions that we studied. 

It should be noted that results from this finite-range approximation are very close to 

the exact finite-range calculations with numerical solution of the deuteron wave function. 

The latter kind of calculation is available by another widely used finite-range DWBA 

code: DWUCK5 [Kunz]. Figure 2.19 shows the comparison between the calculations 

from two codes for the 13C(p,d)12C reaction. They are very close to each other especially 

at the forward angles. At proton energy of 15 MeV, the curve from TWOFNR is just 

1.5% lower than that from DWUCK5 at the region of first peak. At proton energy of 48.3 

MeV, the curve from TWOFNR is 2.0% higher than that from DWUCK5 at the forward 

angles. However, TWOFNR is more user friendly with many options to choose from.  
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Figure 2.18: Calculations for reaction of 13C(p,d)12C (g.s.) using finite-range 
approximation (solid line) and zero-range approximation (dashed line) at incident 
energies of 15 MeV and 48.3 MeV. The cross sections at proton energy of 15 MeV have 
been multiplied by 10 so that the calculations at the two energies can be seen more 
clearly. 
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Figure 2.19: Finite-range DWBA calculations for reaction of 13C(p,d)12C (g.s.) by 
TWOFNR (solid line) and DWUCK5 (dashed line) at incident energies of 15 MeV and 
48.3 MeV. The cross sections at proton energy of 15 MeV have been multiplied by 10. 
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2.3.1.4 Non-Locality Correction 
 

The optical-model potential is usually taken to have simple local form, which means 

that, at the point r, the particle feels the potential only at that point. The Schrödinger 

equation reads  

0)()(
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2
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=
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
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


−+∇− rErU L

vvh
ψ

µ
                            (2.3.42) 

The real situation is more complicated and the optical potential should be non-local, 

which means that the wave function at point rv  is affected within the range of non-local 

potential. U )()( rrL
vv ψ  in Equation 2.3.42 should be replaced by 

')'()',( rdrrrU vvvv ψ∫                                            (2.3.43) 

where )',( rrU vv is the non-local potential. Non-locality can be expected wherever the 

potential is energy dependent that comes from the exchange terms required by the 

asymmetry of the overall wavefunction. 

 This effect has been studied by Perey and Buck [Per62].  They separated the non-

local kernel U )',( rr vv  into a potential form U times a Gaussian non-locality function.  
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where NLβ  is the range of non-locality. The value of NLβ  that Perey and Buck found to 

yield the best fit to the data of neutron scattering on Pb over an energy range from 4.1 

MeV to 24.0 MeV is 0.85 fm [Per62]. For the deuteron, NLβ  is 0.54 fm [Per74].    

Figure 2.20 shows the comparison between the local and non-local proton potential 

from CH89. The local potentials are generally weaker than the non-local potentials, 

NLL VV < and NLL WW < , especially within the interior of the nuclei. Thus, non-

locality reduces contributions to transfer reaction from the interior of the nucleus. The 

main change produced in the cross section is the reduction of the large angle scattering 

while increasing the forward or peak cross section [Phi68]. Figure 2.21 shows the 

calculations for the reaction of 13C(p,d)12C at incident energy of 48.3 MeV, where proton 

potential chooses the global potential of CH89 and the deuteron potential adapts the 

global potential of Daehnick [Dae80]. Finite-range approximation is employed in these 

calculations. The dashed line shows the result from the local proton potential; the solid 

line shows the result when non-locality correction is applied to the proton potential. We 

can see that the cross section by the non-local proton potential increases 12% at forward 

angles, where the spectroscopic factors are extracted. Similar effect is obtained when the 

non-locality correction is applied to the deuteron potential. The total effects are 

cumulative when the non-locality correction is applied to the proton and the deuteron 

simultaneously. Thus it is important to include non-locality corrections in transfer 

reaction calculations. 

The non-locality correction at lower energy is also examined. Figure 2.22 shows the 

calculations for the same reaction at incident proton energy of 15 MeV. The calculations 

with and without non-locality correction are very close at the region of first peak. 
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Therefore, the extracted SF are not strongly affected by the non-locality correction at low 

energy.  
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Figure 2.20: Comparison of the local (dashed line) and non-local (solid line) proton 
potentials (CH89) of 13C at incident proton energy of 48.3 MeV.   

 

 

 

 77



 

 

 

 

 
Figure 2.21: Calculated differential cross section for 13C(p,d)12C at incident proton 
energy of 48.3 MeV by non-local proton potential (solid line) increased 12% at the 
forward angles compared to that by local proton potential (dashed line). 
 

 

 78



 

 

 

 

 
 

Figure 2.22: Calculated differential cross sections for 13C(p,d)12C at incident energy of 
15 MeV using non-local proton potential (solid line) and local proton potential (dashed 
line). 
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2.3.1.5 Neutron Form Factor 

  
In most analyses of single neutron transfer reactions, it is assumed that the neutron is 

picked up or deposited into a shell model single-particle state. In the standard energy 

separation procedure, the corresponding single-particle wave function )( nnlj rvφ , called 

the neutron form factor, is usually taken to be an eigenfunction of a Woods-Saxon 

potential whose geometry is fixed (r0=1.25 fm, a0=0.65 fm,  fm) and depth 

is adjusted so that the eigenvalue is equal to the experimental neutron separation energy 

[Pin65, Ber65].    

3/1
0 ArR ⋅=

Table 2.6 lists the information of the neutron form factors for the four reactions we 

studied in this thesis. Figure 2.23(a) shows )(rnljφ  in the 1 2/1p  orbit for the reaction of 

p(13C,d)12C (g.s.).  The depth Vn is adjusted to be –39.779 MeV corresponding to the 

neutron binding energy of –4.946 MeV. The neutron form factor for the reaction of 

p(13C,d)12C (2+ , 4.439 MeV) is shown in Figure 2.23(b). In this case, the neutron orbit is 

 and the neutron separation energy is –9.385 MeV. Similarly, Figure 2.6 (c) and (d) 

show the neutron form factors for the reaction of p(

2/31p

11B,d)10B (g.s.) and p(10Be,d)9Be 

(g.s.), separately. The well-depths and the binding energies are listed in Table 2.6 

It is important to examine the sensitivity of the calculations to the parameters r0 and 

a0 of neutron potential. Figure 2.24 shows the dependence on the neutron radius 

parameter for the reaction of 13C(p,d)12C (g.s.) at proton energies of 15 MeV and 48.3 

MeV. CH89 and Daehnick potentials are used for proton and deuteron respectively. 

(Finite-range approximation and non-locality correction are employed in all following 

 80



calculations). The neutron radius parameter r0 is changed from 1.2 fm to 1.3 fm while the 

spin-orbit strength is fixed to zero and the neutron diffuseness is fixed to 0.65 fm. The 

change of 0.1 fm (corresponding to 8% change) changes the cross sections at forward 

angles by 16% at higher incident energy and 11% at lower incident energy.  Figure 2.25 

shows the dependence on the neutron diffuseness parameter, where the neutron 

diffuseness changes from 0.6 fm to 0.7 fm with the r0 fixed to 1.25 fm and Vso fixed to 

zero. The increase of 0.1 fm (corresponding to 16% change) in the neutron diffuseness 

increases the cross sections at forward angles 20% at higher energy and 17% at lower 

incident energy.   

Figure 2.26 shows the dependence on the spin-orbit strength. When the spin-orbit 

strength of the neutron potential changes from 0.0 MeV to 6.0 MeV, the cross sections at 

forward angles decrease by 6-8%. Since this effect is small, the spin-orbit strength is set 

to zero in all of the following analyses.  

 

 

Table 2.6 The neutron potentials and the binding energies of the neutron form factors in 
the reactions of this experiment 
 
 

Reaction Neutron 
orbit 

Binding energy 
(MeV) 

Vn  
(MeV) 

r0 
(fm) 

a0 
(fm) 

p(13C,d)12C g.s. 2/11p  -4.946 -39.779 1.25 0.65 
p(13C,d)12C 2+ 2/31p  -9.385 -48.257 1.25 0.65 
p(11B,d)10B g.s. 2/31p  -11.455 -56.853 1.25 0.65 

p(10Be,d)9Be g.s. 2/31p  -6.811 -50.905 1.25 0.65 
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Figure 2.23: Neutron form factors for the reactions of (a) p(13C,d)12C (g.s.), (b) 
p(13C,d)12C (2+), (c) p(11B,d)10B (g.s.), and (d) p(10Be,d)9Be (g.s.). 
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Figure 2.24: Calculations on the variation of neutron radius parameter r0, where the 
neutron diffuseness a0 is fixed to 0.65 fm and the spin-orbit strength Vso is 0.0 MeV. The 
cross sections at proton energy of 15 MeV are multiplied by 10. 
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Figure 2.25: Calculations on the variation of neutron diffuseness a0, where the neutron 
radius parameter r0 is fixed to 1.25 fm and the spin-orbit strength Vso is 0.0 MeV. The 
cross sections at proton energy of 15 MeV are multiplied by 10. 
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Figure 2.26: Calculations on the variation of neutron spin-orbit strength Vso, where the 
neutron radius r0 and diffuseness a0 are fixed to 1.25 fm and 0.65 fm separately. The 
cross sections at proton energy of 15 MeV are multiplied by 10. 
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2.3.2 Adiabatic Deuteron Breakup Approximation (ADBA) 

 
Deuteron is composed of two loosely bound nucleons, a proton and a neutron. Since 

the separation energy between the proton and neutron is 2.224 MeV, deuteron breaks up 

easily in the field of core nucleus. Thus the extraction of the spectroscopic factors from 

(p,d) and (d,p) reactions using the DWBA calculations is usually not very reliable 

especially at high incident energy because of inadequate treatment of the breakup effect 

of  deuteron [Pea66, But67].   

Johnson and Soper [Joh70] extended the DWBA theory involving deuterons to 

adiabatic deuteron breakup approximation (ADBA), which requires only a specification 

of the nucleon-target interactions. In this approximation, the effective two-nucleon-

nucleus interaction is assumed to be the sum of the nucleon optical-model potentials 

evaluated at one-half the incident deuteron kinetic energy. The deuteron adiabatic 

potential is defined as: 

∫ 





 −++= rdrrVrRUrRU

D
RU dpnpnd

vvvvvvvv
)()()

2
1()

2
1(1)(

0
φ        (2.3.46) 

where Un and Up are the neutron and proton optical potentials at one half the deuteron 

bombarding energy, R
v

 is the coordinate of the deuteron center of mass and rv  is the 

relative coordinate between proton and neutron, V )(rpn
v  is the interaction between proton 

and neutron, )(rd
vφ  is the deuteron wave function, and D0 is defined in Equation 2.3.36. 

The exact (d,p) and (p,d) transfer reaction amplitudes require knowledge of the 

adiabatic three-body wave function only at small neutron-proton separations. There, the 

adiabatic distorting potential governing the center of mass motion of the deuteron is well 
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described by the sum of the neutron- and proton- target optical potentials. It is important 

to stress that this adiabatic distorting potential generates the three-body wave function in 

that limited region of configuration space needed to evaluate the transfer amplitude, and 

it does not describe deuteron elastic scattering at the beam energy.    

Figure 2.27 shows the comparison of two deuteron potentials of 12C at Ed = 49.2 

MeV. The dashed line presents the Daehnick global deuteron potential and the solid line 

represents the adiabatic deuteron potential constructed by the CH89 nucleon potentials. 

The adiabatic potential based on CH89 is deeper in the interior and is shallower at the 

surface. The effect on the stripping or pickup cross section is to cause a faster fall off 

with angle and to create stronger oscillations at higher incident energy. Figure 2.28 shows 

the calculations of ADBA (solid line) and DWBA (dashed line) for reaction of 

13C(p,d)12C. At the forward peak, the ADBA calculation is 29% larger than that of the 

DWBA calculation.  

The situation is different at lower incident energy. Figure 2.29 shows the calculations 

for the same reaction at proton energy of 15 MeV. The ADBA (solid line) has similar 

peak value as the DWBA (dashed line) and thus has little effect on the extraction of 

spectroscopic factors. However, to be consistent in the use of deuteron potentials 

throughout the range of energy, we choose ADBA calculations.  

 

 87



 

 

 

 

 
Figure 2.27: Comparison of Daehnick global deuteron potential (dashed line) with the 
adiabatic deuteron potential (solid line) constructed by CH89 potentials, for 12C at Ed = 
49.2 MeV. 
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Figure 2.28: Comparison of ADBA (solid line) and DWBA (dashed line) calculations for 
reaction of 13C(p,d)12C at proton energy of 48.3 MeV. The ADBA increases the cross 
section at the forward angles and faster fall off than DWBA.  
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Figure 2.29: Comparison of ADBA (solid line) and DWBA (dashed line) calculations for 
reaction of 13C(p,d)12C at proton energy of 15 MeV.   
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2.4 Momentum Matching 

 
Assuming Pp is the incident proton momentum and Pd is the momentum of the 

deuteron, the transferred momentum Pt of the neutron is given by conservation of 

momentum [Fes92]: 

pdt PPP −=                                                     (2.4.1) 

From this equation one can immediately determine the magnitude of Pt: 

θcos2222
dpdpt PPPPP −+=                                      (2.4.2) 

Where θ  is the angle between the direction of the final deuteron and the direction of the 

incident proton. The angular momentum transferred, h , must be less than Ptl t R, where R 

is the projectile-target separation at which the reaction occurs. Hence 

2222 )
2
1( Rpl tt ≤+h                                           (2.4.3) 

So that 

))((2

)
2
1()()(

cos

222

RkRk

lRkRk

pd

tpd +−+
≤θ                                (2.4.4) 

where  as usual equals p. This equation expresses the approximate relation between 

the angular position of the first peak in the angular differential cross section and the 

transferred orbital momentum so that the angular position of the first peak in the 

measured angular differential cross section will tell us the value of the transferred orbital 

momentum.   

kh

 91



The transferred momentum is bounded by the momentum of the transferred neutron 

by [Fes92]: 

2
2

1 h

εm
kk

A
A

dp <−
+

                                      (2.4.5) 

where ε  is the binding energy of the neutron. Good momentum matching that satisfies 

the Equation 2.4.5 gives slow radial oscillations and large overlaps in the nuclear surface 

region [Aus87]. Based on the neutron binding energy listed in Table 2.6, the upward 

limits of the proton incident energies in 13C(p,d)12C reaction to the ground state and the 

first excited state are 32 MeV and 66 MeV respectively; for reactions of 11B(p,d)10B 

(g.s.) and 10Be(p,d)9Be (g.s.), the upward limits of the proton incident energies are 82 

MeV and 46 MeV respectively.  

 

2.5 Summary 

 
As one of the fundamental tests of the shell-model theory, the spectroscopic factor 

measures the occupancy of a nucleon in a pure single-particle state. It can be derived 

from the ratio of the measured cross section to the calculated cross section assuming pure 

single-particle state. The theoretical cross sections are calculated via DWBA and ADBA 

models.  

The proton and deuteron global optical-model potentials have been discussed. The 

nucleon-nucleus potentials of CH89 and JLM usually give better descriptions to the 

proton elastic scatterings than other global potentials. An adiabatic deuteron potential can 

be constructed based on the nucleon-nucleus potentials such as CH89 and JLM. ADBA 
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calculations give better predictions than the regular DWBA calculations especially at 

higher incident energy where deuteron break-up effect is significant.  

The wave function of the transferred neutron (neutron form factor) is obtained by 

adjusting the depth of the neutron potential to match the neutron separation energy to the 

experimental value. The radius parameter and the diffuseness of the neutron potential are 

usually fixed to 1.25 fm and 0.65 fm respectively. The sensitivities of the calculations to 

the geometry parameters of neutron potential have been examined.  

We chose target densities to have the form of modified Harmonic oscillator [Dej74] 

for the JLM potentials. The scaling factor λ of the JLM potentials were chosen to be 1.0 

and 0.8 for the real and imaginary parts respectively [Pet85].  

The momentum matching is discussed in Section 2.4. All the standard input 

parameters used in TWOFNR for our calculations are listed in Table 2.7. We adopted the 

value of 15006.25  [Knu75] for the vertex constant . Finite-range 

approximation is employed in the calculations with the Hulthen finite-range factor of 

0.7457 fm [Knu75]. Non-locality correction is also employed with the non-locality range 

32 fmMeV ⋅ 2
0D

NLβ  to be 0.85 fm [Per62] and 0.54 fm [Per74] for the proton and deuteron potential 

respectively. 
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Table 2.7: Summary of the input parameters used in TWOFNR 
 

 

  DWBA Adiabatic CH Adiabatic JLM 

Proton potential Chapel-Hill [Var91] Chapel-Hill [Var91] JLM [Jeu77] 

Deuteron potential Daehnick [Dae80] Adiabatic [Joh70] 
from CH 

Adiabatic [Joh70]  
from JLM 

Target densities   
Modified Harmonic 

oscillator density  
[Dej74] 

n-binding potential 

Woods-Saxon, 
r0=1.25 fm, 
 a0=0.65 fm, 

depth adjusted, 
no spin-orbit 

Woods-Saxon, 
r0=1.25 fm, 
 a0=0.65 fm, 

depth adjusted, 
no spin-orbit 

Woods-Saxon, 
r0=1.25 fm, 
 a0=0.65 fm, 

depth adjusted, 
no spin-orbit 

Hulthen finite range 
factor (fm) 
 [Knu75] 

0.7457 0.7457 0.7457 

Vertex constant D0
2 

( ) 32 fmMeV ⋅

[Knu75] 

15006.25 15006.25 15006.25 

JLM potential  
scaling λ N/A N/A λv=1.0 and λw=0.8 

[Pet85] 

Non-Locality range 
p: 0.85 fm; 
d: 0.54 fm;  

n: N/A; 

p: 0.85 fm; 
d: 0.54 fm;  

n: N/A; 

p: 0.85 fm; 
d: 0.54 fm;  

n: N/A; 
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CHAPTER 3  

 
EXPERIMENTAL SETUP AND DETECTOR 
CALIBRATION 

 
 
3.1 Overview 

 
This experiment was performed at the National Superconducting Cyclotron 

Laboratory (NSCL) at Michigan State University. One experimental objective is to study 

the nuclei with neutron number, N=6, such as 11B and 10Be which can be produced by 

bombarding the production target of 9Be with a primary beam of 13C  (E=80.4 ⋅A MeV) 

produced from the K1200 cyclotron. In addition to 11B and 10Be beams, a secondary 

beam 13C was also produced and the reaction p(13C,d)12C was used for energy calibration 

of the CsI detectors as explained in Section 3.3. The schematic diagram of the beam 

fragment separator A1200 is shown in Figure 3.1. Fragmentations from the collision of 

the primary beam with the production target of 9Be are bent by the two dipoles. A 

momentum slit at dispersive image #1 selects the desired particles according to their mass 

and momentum. A wedge at dispersive image #2 could be used to further disperse the 

particles according to their energy loss. There is another momentum slit at the final 

achromatic image that select the desired secondary beam. The thickness of the production 

target (9Be) and the beam intensity are listed in Table 3.1.    

The experiment was carried out in the S800 vault at NSCL. Figure 3.2 shows the 

schematic of the facilities in the S800 vault. The secondary beam particles produced after 
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the A1200 were transported to the S800 line. They were bent through the analysis line 

consisting of Sextupoles, an Intermediate Image, Dipoles, and a Quadrupole Triplet 

before the target chamber. The (p,d) reactions took place inside the target chamber which 

contains the reaction targets of polyethylene (CH2)n foils. The thickness of the (CH2)n 

targets are listed in Table 3.1. The total detection system includes the Multi Wires Drift 

Counter (MWDC) detectors, the Large Area Silicon Strip Array (LASSA) [Wag01, 

Dav01], and the S800 spectrometer.  The following sections will describe each of these 

detectors separately.  
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Table 3.1:  The properties of the secondary beams and the targets 
 

  

Secondary 
beam 

Thickness of 
mid-target of 

9Be  
(mg/cm2) 

Secondary beam 
energy before 

target 
(MeV⋅A) 

Total energy 
(MeV) 

Equivalent 
proton energy 

(MeV) 

Beam density 
before target 

(pps) 

Thickness of 
CH2 target 
(mg/cm2) 

11B 837 43.8  481.8 44.1  2.5×105 2.3 

10Be 837 49.5  495.0  49.8 2.5×105 3.7 

13C 837 47.9  622.7  48.3 2.8×106 3.7 

13C 0.94 75.8  985.4  76.4 2.8 ×106 3.7 
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Figure 3.1:  Schematic diagram of A1200.
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Figure 3.2:  Schematic diagram of the facilities in S800 vault
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3.1    MWDC Detectors 

 
3.2.1 Principle of MWDC Detector 

 
The Multi Wire Drift Counters (MWDC) are used to measure the beam positions and 

angles at the intermediate image chamber of the S800 vault. Each MWDC detector has an 

active area of 11.2×11.2 cm2 covered by PPTA (p-Phenylene Terephthalamide) [Fuj89] 

foil of 50 µm thick at the front and back windows. It is filled with P30 gas (70% Ar and 

30% CH4) at a pressure of 500 torr. Beam particles transversing through the production 

targets and the MWDC detectors lose energy due to interactions of the beam with the 

target and other materials used to construct the counters. Taking into account the energy 

loss which could be substantial with thick Be targets, the beam energies before the 

(CH2)n targets are calculated and listed in Table 3.1.  

Each MWDC detector has two orthogonal wire planes for the X direction and the Y 

direction, respectively. The front and back of these two wire planes are covered by 12 µm 

thick mylar foil at front and back. Another mylar foil with the same thickness is placed 

between the two wire planes. A schematic drawing of one wire plane is shown in Figure 

3.3. In each plane, there are 14 anode wires and 15 field wires. The working voltage of 

the anode wires is 580 Volts. The separation of the adjacent anode wires is 8.0 mm, and 

all the anode wires are connected to a micro-strip delay line. This delay line has two 

timing outputs T1 and T2. The field wires are separated into two groups. Every other field 
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wire is connected together and gives the left-right position signals E1 and E2, 

respectively.  

An enlarged drawing for the ions drifting between the wires is shown in Figure 3.4. 

The positive ions drift towards the field wires and the negative electrons drift towards the 

anode wire. The time signals T1 and T2 are expressed as: 

dtZkdtT +⋅−+= 011 )1(                                            (3.2.1) 

dtZkdtT +⋅−+= 022 )14(                                         (3.2.2) 

where Z0 is the delay time between adjacent anode wires, dt1 and dt2 are the delay times 

from the left and right wire ends to the preamplifier respectively, dt is the drift time of the 

negative electrons from the hit point to the anode wire, and k is the wire sequential 

number. Subtracting T2 from T1 yields :  

02121 )152( ZkdtdtTT ⋅−+−=−                                (3.2.3) 

Then the wire sequential number k is    

2
15

2
)(

0

2121 +
+−−

=
Z

dtdtTTk                                   (3.2.4) 

A spectrum of the wire sequential number k is shown in Figure 3.5. By adding T1 and T2, 

we get  

dtZdtdtTT 213 02121 +++=+                                (3.2.5) 

Then the drift time dt is 

2
13 02121 ZdtdtTT

dt
−−−+

=                                (3.2.6) 

A spectrum of the drift time dt is shown in Figure 3.6, where the time is scaled in units of 

microseconds ( secµ ). The sharp peak near the zero drift time and the tail at the drift 
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time around 80 µs correspond to the nonlinear electron drifting. Analysis indicated that 

5% of the total particles are affected by this nonlinear behavior.    

 The left-right ambiguity is resolved by comparing the amplitudes of the two signals 

E1 and E2 from the field wires. When the negative ions move close to the anode wires, 

they produce a significant multiplicative effect and produce lots of positive ions around 

the anode wire. Some of the positive ions will drift to the field wires. Since more positive 

ions are produced on the side that the negative ions drift from, the particles hitting at one 

side of anode wire produce larger signals on field wire in this side than the other. Figure 

3.7 depicts a typical spectrum of the signals from one side of field wires versus the 

signals from the other side.    

Since alternate field wires are connected together, the particle position is calculated as 

following in units of millimeters (mm). 





>−
<

=Θ−⋅Θ⋅−+=
21

21
,1

,1
,

0.20
)1(0.8

EE
EE

Ddtkp k                   (3.2.7) 

where k is the wire sequential number, dt is the drift time, D is the alignment center in 

value of 60.0 mm, and Θ is the left-right ambiguity function of E1 and E2. 

 

3.2.2 Position Calibration 

 
To ensure that all the equations used in the position determination of MWDC 

detectors are correct, a mask made of a 3.1 mm-thick brass plate is used to calibrate the 

position. Figure 3.8(a) shows the pattern on the mask. The distance between adjacent big 

holes is 10.2 mm; the distance between adjacent small holes is 2.54 mm. There is one L-
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shaped slit with the width of 2.0 mm. The area in the middle surrounded by a dotted 

rectangle is the area that detected the passing beam particles. Figure 3.8(b) is the 

reconstructed two-dimensional position spectrum of the mask using the 11B beam, where 

the beam was focused on the middle position between the first and second MWDC 

detectors. A position resolution of 0.4 mm was achieved. 
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Figure 3.3: Schematic drawing of wire plane of MWDC detector. All the anode wires are 
connected to a micro-strip delay line, which has two timing outputs T1 and T2. Every 
other field wire is connected together to form two groups and gives the left-right 
ambiguity signals E1 and E2, respectively. 
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Figure 3.4: An enlarged drawing of the ions drifting between the wires. The positive ions 
drift toward the field wires and the negative ions drift toward the anode wire. The term dt 
is the drift time of the negative ions from the hit point to the anode wire. 
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Figure 3.5: Spectrum of the wire sequential number k. Each individual sharp peak 
indicates the wire with its sequential number. 
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Figure 3.6: Spectrum of drift time dt, where the time is scaled in units of microseconds. 
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Figure 3.7: Spectrum of E2 versus E1. There are two groups of particles. The left-right 
ambiguity can be clarified by which side yields a larger signal than the other.   

 

 

 

 108



 

 

 

     (a) 

 

    (b) 

 
Figure 3.8: (a) Patterns on the mask used to calibrate the MWDC detector. The distance 
between adjacent small holes is 2.54 mm; the distance between adjacent big holes is 10.2 
mm; (b) The two-dimensional position spectrum of the mask. The corresponding areas 
are surrounded by the dotted rectangle in (a) and (b).  

 109



3.3 LASSA Detector Array 

 
3.3.1 Overview 

 
The Large Area Strip Silicon Array (LASSA) was designed and constructed to 

provide excellent energy, angular, and isotope resolution for the detection of charged 

particles. It has been used successfully to study the isospin degree of freedom in heavy 

ion multifragmentation experiments at NSCL [Tan02, Liu05]. It consists of 9 individual 

telescopes, which can be arranged into various configurations. Each LASSA telescope 

consists of two silicon strip detectors and a cluster of four CsI(Tl) scintillators. The side 

view of the telescope assembly is shown in Figure 3.9. A 5 mg/cm2 SnPb foil covers the 

top window and provides a dark environment to the Si detectors. In addition, the foil also 

protects the Si detectors from electrons produced in nuclear collisions. The two silicon 

strip detectors are mounted inside the top frame below the SnPb foil. Right behind the 

two silicon detectors are four CsI crystals with light guides and photodiodes mounted on 

the back. The preamplifiers, and their motherboards, for the CsI detectors are placed 

directly behind the photodiodes. A cooling bar is mounted at the back of each telescope 

to keep the telescope at constant temperature.  

 

 110



3.3.2 Geometric Setup 

 
In this experiment, LASSA is used to detect the deuteron particles emitted from the 

(p,d) reactions. The 9 telescopes were separated into three groups and mounted on three 

independent frames. A schematic drawing of the detector setup is shown in Figure 3.10. 

The following coordination in the laboratory frame has been adopted:  the beam 

direction is defined as the z axis and the upward direction is the x axis; the polar angle θ 

defined the angle of the particle direction with respect to the beam axis; the angle α is the 

angle between the particle projection on the z-y plane and the z axis; the angle β is the 

angle of the particle direction with respect to its projection on the z-y plane. For 

reference, each telescope is assigned a number as labeled in Figure 3.10.  The geometry 

of the centoid of each telescope is specified in Table 3.2. The detectors cover the angular 

range of 3.6°<θ<36.9° in the laboratory frame, which covers mainly the first peaks of the 

transfer reactions. Beyond this region, the kinematic broadenings increase dramatically in 

inverse kinematics.   

 

3.3.3 Silicon Strip Detector Array 

 
3.3.3.1 Overview 

 
 
Silicon strip detectors are widely used in nuclear experiments because of their 

excellent energy resolution and linear response for charged particles. Both layers of 

silicon strip detectors used in LASSA are ion-implanted, passivated devices, Si(IP), 
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obtained from Micron Semiconductor [Micr]. For all the strip detectors used in our 

experiment, the width of each strip is 3 mm, and there is a 0.1 mm wide gap between 

adjacent strips. The active area on each surface is about 50×50 mm2. 

The front silicon detector, which is labeled as DE, is about 65 µm thick. It has 16 

strips on the front surface. There are two different types of silicon strip detectors for the 

second Si detector. One is double-sided and about 500 µm thick, and the other type is 

single-sided and about 1000 µm thick. In the double-sided detector, the strips on the front 

are perpendicular to the strips on the back. For convenience, we refer the front strips and 

the back strips of the double-sided detector as EF and EB respectively. For the single-

sided second detector, only the label EF is used. The close-packed design of the 

telescopes right next to each other with a minimum dead area required the development 

of a highly flexible flat printed circuit board cable connecting the silicon strip detectors 

with the pre-amplifier housings. Figure 3.11 shows the picture of a double-sided silicon 

strip detector with the flat printed circuit board cables. The combinations of the silicon 

strip detectors are listed in Table 3.2. The reason for choosing 1.0 mm silicon detector for 

telescope 2, 4, 5, and 9 is that the deuterons emitted at smaller angles have lower energies 

and will be stopped inside the 1.0 mm silicon detectors. The deuterons emitted at larger 

angles with higher energies (E>10.8 MeV) would punch through the 500 µm silicon 

detectors and be stopped in the CsI(Tl) crystals.  

One advantage of silicon-strip detectors is their position resolution. For the double-

sided detectors, we can use the orthogonal strips on EF and EB to obtain each particle’s 

(x, y) pixelwise position. When the 1.0 mm detector is used, its strips are oriented 

orthogonally to the strips in the DE silicon detector to provide a two-dimensional 
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position. As the strips are 3.1 mm apart, the 50mm×50mm lateral dimensions of each 

telescope are divided into 256 (16×16) square pixels with a resolution of 3×3 mm2. At a 

distance of 205.3 mm, the angular resolution of the pixel is 0.43 deg. Telescopes 4, 5, and 

7 were placed at a greater distance of 392.6 mm and their angular resolution is 0.22 deg. 

All the position and angular information is summarized in Table 3.2. 

 
 

3.3.3.2 Energy Calibration 

 
One advantage of silicon detectors is their linear and largely particle independent 

energy response. In this experiment, the relevant deuteron energies range from 9.0 MeV 

to 20 MeV. The silicon energy response in this range is very linear. However, due to the 

nonlinearity of electronic system including preamplifiers, shapers, and ADCs, energy 

calibration must be performed. 

A BNC (Berkeley Nuclear Co.) precision pulser generator was used to calibrate the 

silicon detectors. The pulser has a group of attenuation switches to change the amplitude 

of the output signal. Three attenuation settings were chosen corresponding to three 

different dynamic ranges. An absolute calibration was obtained from the measurements 

of 228Th α source for these three settings. The linear relation between the pulser dial 

value and its equivalent energy was obtained:  

  bWaE +⋅=                                                       (3.3.1) 

where E is the equivalent energy of the pulser signal in the units of MeV, and W is the 

dial value in the Volts. The values of a and b for the three different settings, as listed in 
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Table 3.3, show that the output of the pulser is not strictly proportional to the dial voltage 

and the offsets are not zero.    

Right after the experiment was finished with all the electronics setup intact, the 

calibrated pulser signals were sent as inputs into the preamps of each strip. Then one-by-

one, the pulser-calibration was carried out for all 352 silicon channels. The signals were 

read by the DAQ program and analyzed with the analysis program SMAUG. A linear 

fitting was performed to the channel reading C and the energy E converted from the 

pulser dial value W by Equation 3.3.1. The relation between C and E was obtained for 

each strip: 

   ii hCgE +⋅=                                                    (3.3.2) 

where i stands for each strip.  Equation 3.3.2 was used to convert the channel readout 

from each strip into particle energy in units of MeV. There is a total of 352 calibration 

curves for the Si-strips. As an example, Figure 3.12 shows the calibration curve for the 

No.6 strip of the EF detector in telescope 3.    

 

3.3.3.3 Particle Identification 

 
In a heavy ion collision, many kinds of particles like protons, deuterons, tritons, and 

other fragments from the projectiles are detected in LASSA detectors. Since we are only 

interested in the deuterons, a particle identification (PID) must be performed to 

distinguish the other particles. The PID can be performed by a combination of ∆E and E 

detectors.  
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For particles passing through a detector, the energy loss is approximated by the Bethe 

formula [Bar96]: 

dx
E
ZAk

E
2

≈∆                                                    (3.3.3) 

where dx is the detector thickness, k is a proportional constant, A is the mass number, 

and Z is the atomic number of the particles. For a fixed dx, a plot of ∆E versus E yield a 

family of contours with ∆ . Each line corresponds to an integer value of Z and A. EE /1∝

Figure 3.13 shows the ∆E-E spectrum of telescope 7. The x axis is the particle energy 

deposited in the EF strip detector; the y axis is the energy loss deposited in the DE strip 

detector. By vetoing the particles stopped in CsI(Tl) crystals, we were able to separate the 

deuterons and protons as well as tritons. 

 

3.3.3.4 Position Calibration   

  
The position determination of the emitted deuterons is critical in this experiment. To 

determine the position of each pixel of the telescope accurately, we need to perform the 

position calibration. The angular position ),( βα  of the center of each telescope was 

determined optically by using a system composed of a optical telescope and a mirror as 

shown in Figure 3.14. The mirror was mounted on a turntable which can be rotated in 

both horizontal and vertical planes and the rotation angles can be read from the turntable. 

The center of the mirror was placed at the center of the target in the experiment. The 

optical telescope was mounted in the beam line. The mirror was rotated until the center of 

each detector is visible and aligned with the optical telescope, then the angular positions  
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),( βα  of the detector center are: 

02 αα ⋅=  

02 ββ ⋅=                                                      (3.3.4) 

where 0α  and 0β  are the angles of the mirror rotated in the horizontal and vertical 

planes. The rotation angles can be read to the accuracy of 0.01 degree so the accuracy of 

the measurement is 0.02 degree. The angular position of the center of each detector is 

listed in Table 3.2. The coordinates ),,( zyxrv  of each pixel of the LASSA telescopes are 

obtained  by: 

),,()()(),,( 0000 zyxrRRzyxr yx
vv ⋅⋅= βα                            (3.3.5) 

where  is the distance between the target and the center of the detector;  and  are 

the vertical and horizontal distances between the pixel and the center of the detector, 

respectively; 

0z 0x 0y

)(αxR  and )(βyR  are the rotation matrices along the x axis and y axis. 

They are defined as: 
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cos0sin
000

sin0cos
)(yR                                      (3.3.6) 

We performed the calibration before and after the experiment. The positions did not 

change during the experiment. 
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3.3.4         CsI(Tl) Crystals 
 
 
3.3.4.1     Detectors 

 
 
The CsI(Tl) crystals are produced by Scionix [Scio]. A non-uniformity in light output 

of CsI(Tl) crystals better than 1% was obtained via crystal selection and a quality control 

procedure [Mic99, Tan02]. Each crystal is trapezoidal in shape as shown in Figure 3.15, 

and the length of the crystal is 6.0 cm. The front and back areas are 2.64×2.64 cm2 and 

3.38×3.38 cm2, respectively. To allow compact packing, the sides between adjacent 

crystals are at right angles to each other while the sides next to the frame are cut at an 

angle of 7.09 degrees. Each crystal is wrapped with two layers of cellulose nitrate on the 

outer surfaces (next to the frame) and one layer on the inner surfaces. One layer of 

aluminized mylar foil (0.15 mg/cm2 mylar + 0.02 mg/cm2 Al) is inserted between 

adjacent crystals to ensure optical isolation.  

Each crystal is optically coupled to a clear 1.0×3.5×3.5 cm3 acrylic light guide with 

optical epoxy BC600 [Bicr]. This light guide is in turn optically connected to a 2.0×2.0 

cm2 Hamamatsu S3204 photodiode [Hama] with clear silicone rubber compound 

RTV615 [Gene]. To prevent light leak and cross-talks between adjacent crystals, the 

outer sides of the light guide and the photodiode are painted with a reflective white paint 

BC620 [Bicr].  

To reduce the noise level, the charge-sensitive preamplifiers are mounted right behind 

the crystals to reduce the length of the input cables and minimize the capacity input to the 
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preamplifiers. There are two motherboards in one telescope. Each one hosts two 

preamplifiers.  

Fig 3.9 shows the internal mounting structure, the outside of the detector box is open 

and the two silicon strip detectors are placed on the side. An aluminum mylar foil covers 

the top of the wrapped crystals to maximize light reflection and improve the energy 

resolution. One motherboard of the preamplifiers can be seen under the crystals.  

Three major precautions are taken to reduce the cross-talks between the preamplifiers 

of the CsI detectors. The first is to place a grounded copper shielding between the two 

motherboards to minimize broadcasting; the second is to put a 110 Ω resistor on the test 

input line connecting the two preamplifiers on the same motherboard to terminate each 

amplifier; the third is to use shielded coaxial cables instead of twisted-pair cables to 

reduce the broadcasting between cables. With this set up, the cross-talks are reduced to 

the level of 0.1% [Mar98].  

 

3.3.4.2 Energy Calibration 

 
The fluorescence emitted by the CsI(Tl) scintillator has two major components of a 

fast (500 ns) and a slow (7 µs) decay time constants. The relationship of light output and 

energy is mass and charge dependent. Therefore the CsI calibration cannot be performed 

by different kind of particle, neither by pulsers. In addition, the light output of a CsI 

crystal also depends on the Tl doping of CsI crystals. Since every CsI crystal may have 

different doping during manufactory, it is necessary to perform calibration for each CsI 

crystal individually. 
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For heavy ions at low energy, the light output of a CsI crystal shows non-linear 

response to the deposited energy [Lar94, Bir51]. However, for the isotopes of hydrogen, 

Tan [Tan02] and Handzy [Han95] found that linear functions result in good fitting. 

However, previous calibrations did not extend deuteron calibration below 20 MeV, so the 

deuteron response function for the CsI crystals was not known in our energy region of 

interest. 

Calibration of the CsI(Tl) crystals was achieved by the reaction of p(13C,d)12C. 13C is 

the primary beam with high beam density. The emitted deuterons corresponding to the 

ground state and the first excited state of 12C can be identified clearly in the energy 

spectrum. As the deuteron scattering angle is known from position calibration of the 

pixels, the deuteron energy is obtained by kinematic calculation. As shown in Figure 

3.16, the emitted deuteron goes through target, SnPb foil on the window of telescope, DE 

silicon strip detector, and EF(EB) silicon strip detector before being stopped in CsI 

detector. The deuteron energy deposited into the CsI detector is: 

   EFDESnPbtardCsI EEEEEE ∆−∆−∆−∆−=                         (3.3.7) 

where  is the emitted energy of the deuteron from the target determined from 

kinematics, and  are the deuteron energy losses in target and SnPb foil 

respectively. These energy losses are obtained using the program ENLOSS [Enlo] 

according to the material components and thickness. 

dE

tarE∆ SnPbE∆

DEE∆  and EFE∆  are the energies 

deposited into DE and EF(EB) silicon strip detectors. Then the channel readout C  

from CsI detector can be calibrated to  by a linear fitting: 

CsI

CsIE

  iCsIiCsI CE ρλ +⋅=                                                  ( 3.3.8) 
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where  i stands for each CsI crystal. This equation was used to convert the readout of the 

CsI detectors into particle energy in units of MeV. Figure 3.17 shows the calibration 

curve for the No. 3 crystal in telescope 3. Clearly, the linear fitting works very well for 

the deuteron calibration from 1 MeV to 14 MeV. This result is consistent with the 

observations of Tan [Tan02] and Handzy [Han95]. Our fitting results in a precision of the 

calibration better than 2%.    

 

3.3.4.3 Particle Identification 

 
For the particles that stopped in CsI(Tl) crystals, the particle identification can be 

performed by the combination of silicon strip detectors and CsI(Tl) detector. Figure 3.18 

shows the ∆E-E spectrum of telescope 3. The x axis is the particle total energy, including 

the energies deposited in DE, EF(EB) silicon strip detectors and CsI detector; the y axis is 

the sum of 4 times the energy loss in DE detector and the energy loss in EF(EB) detector.  

The deuterons and protons are well separated. 
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Table 3.2: Geometric setup of the telescopes and the configurations of the silicon strip 
detectors. 

 
 
 

Telescope 
No. 

 
 
θ 

(deg.) 

 
 
α 

(deg.) 

 
 
β 

(deg.) 

 
 

Dist. 
(mm) 

 
 

Angular 
resolution

Thickness 
of 
DE 

silicon  
strip 

detector  
(µm) 

Thickness 
of EF/EB 

silicon  
strip 

detector  
(µm) 

1 21.5 -14.2 -16.3 205.3 ±0.43° 67 480 

2 14.2 -14.2 0 205.3 ±0.43° 68 978 

3 21.5 -14.2 16.3 205.3 ±0.43° 64 500 

4 7.0 0 -7.0 392.6 ±0.22° 64 913 

5 7.0 0 7.0 392.6 ±0.22° 65 982 

6 27.9 23.0 -16.3 205.3 ±0.43° 67 481 

7 16.7 0 16.7 392.6 ±0.22° 66 476 

8 27.9 23.0 16.3 205.3 ±0.43° 70 482 

9 23.0 23.0 0 205.3 ±0.43° 66 993 

 
 
 
 

Table 3.3:  The calibrated parameters in Equation 3.3.1 

 

Attenuating 
setting 

Maximum energy 
range a b 

× 2 30 MeV 5.0592 -0.1081 

× 5 16 MeV 2.0347 -0.0933 

× 20 3 MeV 0.5115 -0.1223 
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Figure 3.9: Structure of LASSA telescope. 

 
 
 
 
 
 
 
 
 
 

 122



 
 
 
 
 
 
 
 

 
 
 

Figure 3.10: Schematic of the geometric setup. 
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Figure 3.11: One double-sided silicon strip detector with the flat printed circuit board 
cables. 

  

   

 

0.0265-0.0021CE =

Figure 3.12: Calibration curve for silicon strip detector, by which the channel readout of 
the silicon strip detector is converted to particle energy in units of MeV. This curve 
stands for the No. 6 strip of EF detector in telescope 3. 
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Figure 3.13: Particle identification using the energy spectrum of EDE vs. EEF for telescope 7. 
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Figure 3.14: Geometry calibration system composed of one optical telescope and a mirror 
mounted on a turntable with two orthogonal axes that rotate in horizontal and vertical 
planes. The center of the mirror is the position of the target in the experiment and the 
optical telescope is mounted in the beam line. 

 

 

 

 
 
 

Figure 3.15: The shape of CsI(Tl) crystal. 
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Figure 3.16: Schematic of the CsI calibration. The deuteron emitted angle is determined 
by the pixel on DE and EF(EB) silicon strip detectors. The deuteron emitted energy is 
obtained by kinematic calculation. The deuteron deposited its energy into the CsI crystal 
after going through target, window foil, DE and EF(EB) silicon strip detectors. 
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0.1777-0.0188CE =

 
Figure 3.17: Calibration for CsI detector, by which the channel readout of the CsI 
detector is converted to particle energy in units of MeV. This figure shows the calibration 
for the No. 3 crystal in telescope 3.  
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Figure 3.18: Particle identification in the energy spectrum of EFDE EE +4  vs.  for 
telescope 3. 

totalE
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3.4 S800 Spectrometer 

 
3.4.1 Overview 

 
The working principle of magnetic spectrometer is following: A particle with charge 

q and mass m, traveling at speed v, passing through a uniform magnetic field with 

strength B, will travel in a circular path with radius ρ given by  

ρB
q
vm =                                                    (3.4.1) 

Relativistically, the mass is γm, where m is the rest mass and γ is the Lorenz 

transformation factor. Thus, for a given magnetic field setting, particles with identical 

momentum to charge ratios are deflected the same amount by the magnet.  

A schematic of the S800 spectrometer is shown in Figure 3.2. It stands behind the 

target chamber and consists of one quadruple doublet, two dipoles, and one focal plane 

detector. The advantages of S800 spectrometer are the high energy resolution and large 

solid angle acceptance [Zha97, Yur99, Cag99]. Some of notable characteristics of the 

S800 spectrometer are listed in Table 3.4.  

Figure 3.19 shows the schematic of the focal plane detector of S800. It consists of 

two Cathode Readout Drift Chambers (CRDC), one ion chamber, and four plastic 

scintillators. The CRDC detectors measure the two transverse positions and angles of the 

particles; the ion chamber measures energy loss in the gas; the plastic scintillators 

measure the particles energies.  

The particle flight time is measured relative to the cyclotron radiofrequency (RF) 

pulses. Different species of particles emitted from the reactions have different velocity, 
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and hence different flight time to the focal plane. This flight time measurements can then 

be used in conjunction with the energy loss measurements or total energy measurement to 

identify the particle species that arrive at the focal plane. 

 

3.4.2 Cathode Readout Drift Counters 

 
The CRDC detectors have an active area of 30 cm × 59 cm and an active depth of 1.5 

cm. They are filled to a pressure of 140 Torr with 80% CF4 and 20% C4H10. Figure 3.20 

shows a schematic illustrating the principles of their operation. Ions traveling through the 

gas create ionizations. A constant vertical electric field in the detector move the electrons 

toward an anode wire, where charge amplification takes place in the high electric field 

close to the wire. The anode wires are placed below a ground Frisch grid and held at a 

constant voltage, typically 1400 Volts. The electrons are collected on the anode wire. 

Cathode pads are located in front and back of the anode wires. The charges collected on 

the anode wire induce positive charges on the cathode pads. There are 224 pads in each 

CRDC detector. The centroid of the Gaussian fit to the charge distribution is used as the 

horizontal position in the detector.  

The vertical position is determined by the drift time of the electrons to the anode wire. 

The typical drift time of the electrons to the anode wire is 0-20 µs, depending on their 

vertical position. Measuring the time between the scintillator signal and the anode wire 

signal provides a direct vertical position measurement of the particle track.   

Masks with well-defined holes and slit patterns as shown in Figure 3.21(a) are placed 

in front of the CRDC detectors to calibrate the detector positions. Figure 3.21(b) is the 
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position spectra taken with 10Be beam with the mask placed in front of the first CRDC 

detector. The position resolution of 0.2 mm is achieved. 

 

3.4.3 Ion Chamber 

 
Immediately following the CRDCs, the beam particles pass through an ionization 

chamber. The ion chamber (IC) used in the S800 is a standard Frisch grid ion chamber 

[Yur99]. It is designed to measure the energy loss as the beam particles ionize the gas in 

the detector by sampling the signal generated along sixteen anode strips. The gas used is 

P10, which is composed of 90% argon (Ar) and 10% CH4 (methane). The energy loss in 

the ion chamber combined with the time-of-flight or the energy deposited in scintillator 

detectors can provide particle identification.  

 

3.4.4 Plastic Scintillators 

 
There are four plastic scintillators in S800 spectrometer. They are made of BC-408 

scintillant plastics manufactured by Bicron [Yur99]. In the order from first to last, with 

respect to the beam direction, the scintillators are labeled as E1, E2, E3, and E4 in Figure 

3.19 with the thickness of 3 mm, 5 cm, 10 cm, and 20 cm respectively. Light guides are 

mounted on each end to enhance the collection of the light in the photomultiplier tubes 

(PMT). The light travels through the plastic as well as the light guide and is collected in 

the PMT’s on the top and bottom ends of the scintillator. The energy deposited in the 

scintillator is calculated by: 
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Down
i

Up
ii EEE ×=                                           (3.4.2) 

In the meanwhile, we get the number of particles that enter into S800. We performed 

normalization run at the beginning of each kind particle beam, when the targets are 

moved out of the position and the beam particles enter S800 directly. We measure the 

beam transfer efficiency by the ratio of particle number in S800 to the particle number 

going through BLT2 scintillator. The normalization procedure will be introduced in 

Section 4.3. 

Since both energy degraded beam particles and the residual particles from the (p,d) 

reaction enter S800 spectrometer simultaneously, we need to separate them out by the 

combination of deposited energy in E1 vs. time-of-flight. As an example, Figure 3.22 

shows the spectrum of the deposited energy in E1 versus the particle time-of-flight for the 

reaction of p(11B,d)10B. The residual particle of 10B is separated from the incident beam 

of 11B.  

 

3.4.5 Summary 

   
Originally, we plan to use S800 spectrometer to detect the recoiled residual nuclei in 

coincidence with the deuterons detected by LASSA detector to perform complete 

kinematic measurement. Based on the above analyses, S800 supplies excellent particle 

position determination via CRDC detectors and good particle identification via the 

combinations of energy loss in ion chamber, energy deposited in scintillators, and time-

of-flight of particles. Unfortunately, there were errors in writing the data from S800 

spectrometer onto the tape in this experiment so that some S800 data were lost. In the 
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present work, the S800 spectrometer was used only for the normalization, when the data 

from S800 are complete.  
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Figure 3.19: Schematic of the focal plane detector of S800 spectrometer. It consists of 
two CRDC detectors, one ion chamber, and four plastic scintillators. 
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Table 3.4: Characteristics of the S800 spectrometer 

 

Energy resolution 410 −=
∆
E
E  

Momentum resolution 5105 −×=
∆
P
P  

Energy range 11.6 % 

Momentum range 5.8 % 

Solid angle 20 msr 

Angular resolution ≤2 mrd 

Horizontal detector 
resolution 0.3 mm 

Vertical detector 
resolution 0.3 mm 

Maximum rigidity 4.0 T-m 

Maximum dipole field 1.42 Tesla 
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Figure 3.20: Schematic of the CRDC detector. A particle ionizes the gas as it passes 
through the detector. The electrons drift to the anode wire where they are collected. The 
induced image charges on the cathode pads provide horizontal position information. The 
drift time of the electrons to the anode wire provide vertical position information.   
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Figure 3.21: (a) Patterns on the mask. (b) Position spectrum of the mask placed in front of 
the first CRDC detector.  
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Figure 3.22: Spectrum of the energy deposited in E1 scintillator versus the time-of-flight 
for the p(11B,d)10B reaction.                           
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3.5 Data Acquisition Electronics 

 
Figure 3.23 is a schematic of the electronics used in this experiment. The signals from 

the up and down PMT’s of the first scintillator E1 are sent to constant fraction 

discriminator (CFD) module. The outputs of the CFDs are AND-ed to give the S800 

premaster signal. The S800 premaster signal and the CFD outputs of the anode wires of 

CRDC detector are used as the start and stop for the drift time in the CRDCs. The TAC 

output is input to module of analog-to-digital converter (ADC). The cathode pads are read 

by the fast encoding and reading ADCs (FERA). The gate for the FERAs is given by the 

AND of the S800 premaster and the anode pulse.   

The signals from the silicon and CsI(Tl) detectors are digitized in Phillips Scientific 

peak-sensing ADCs (7164H).  The signals from the EF silicon strip detectors are sent to 

Shaper-Discriminator-TFC dual modules. For this module, the shaper outputs are sent to 

ADCs; the TFC outputs are sent to Lecroy 4300B fast encoding and reading ADCs 

(FERA) to give the time signals; the trig outputs from all 9 telescopes are OR-ed to give 

LASSA Premaster signal.  

The LASSA Premaster will be AND-ed with S800 premaster to give coincidence 

Premaster signal. The LASSA Premaster will also be delayed and downscaled to give 

LASSA trigger signal.   

The Master signal is logically AND-ed with the Busy  signal from the computer, 

coincidence Premaster, S800 premaster, and LASSA trigger. The Master signal is the 

start signal to the computer and stop signal for the TFC. The gates for the modules of 

ADCs and FERAs are also supplied by the Master signal. 
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Figure 3.23: Schematic of the electronics. 
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CHAPTER 4  

 
EXTRACTION OF ANGULAR DIFFERENTIAL CROSS 
SECTIONS 
 
 
4.1 Overview 

 
This chapter will discuss the extraction of the deuteron spectra and analyze the 

contributions to the energy resolution in Section 4.2. In section 4.3, the procedure to 

extract the differential cross sections will be introduced and the measured data are 

presented.   

 

4.2 Deuteron Spectra   

 
Applying the PID gates obtained in Section 3.3, we can pick out the deuterons and 

obtain their energies in laboratory frame via Equation 3.3.2 and Equation 3.3.8 for silicon 

strip detectors and CsI(Tl) crystal detectors respectively. The deuteron energy in the 

center of mass is obtained by converting the measured deuteron energy in the laboratory 

frame to the center of mass frame. 

θcos
2
1

2
1

0
2

0
2 VmVmVmVEcm −+=                                (4.2.1) 

where m is the deuteron mass, V is the deuteron velocity, V0 is the velocity of the center 

of mass, and θ  is the emitted angle of deuteron.  Figure 4.1 shows the deuteron energy 

spectrum of the p(13C,d)12C reaction at the laboratory angle of 19°. The peaks of ground 
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state (0+) and first excited state 4.439 MeV (2+) can be distinguished clearly. The peaks 

at 7.654 MeV (0+) and 12.71 MeV (1+) do not have enough statistics but still can be 

identified. The peaks at 15.11 MeV (1+) and 15.44 MeV (2+) cannot be resolved 

completely.  

To estimate the full width at half maximum (FWHM) of the peaks in the laboratory 

frame ∆EL, we need to take into account that the emitted deuterons emitted from the 

reactions have to go through the remainder of the target and the SnPb foil before reaching 

the Si detectors. 

222
θEEEE SnPbtarL ∆+∆+∆=∆                           (4.2.2) 

where ∆Etar is the rms width of the deuteron energy loss distribution in the target, ∆ESnPb 

is the deuteron energy straggling in the SnPb foil, and the ∆Eθ is the kinematic 

broadening due to the angular resolution of the strip detectors. ∆Etar is larger than the 

width given by energy loss straggling because of the variation of energy loss in the target 

depend on how much of the target is traversed before the reaction occurs. The beam 

broadening and the beam straggling in the target are not included in Equation 4.2.2 

because they contribute little to the deuteron resolution. The FWHM in the center of mass 

derived from Equation 4.2.1 is  

θθθ ∆⋅+∆⋅−∆=∆ sincos 00 VmVVmVEE LLLcm            (4.2.3) 

where ∆θ is the angular accuracy of pixelation (±0.1°), LV∆  is the FWHM of deuteron 

velocity in laboratory frame. Table 4.1 lists the contributions to deuteron resolution.   The 

energy straggling are calculated by the program SRIM [Srim]. The energy broadening 
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∆Eθ due to the angular resolution and the energy loss in the target contribute most to the 

final energy resolution. The experimental FWHM for the peaks of 0.0 MeV and 4.439 

MeV are 800 keV. The estimated energy resolutions are pretty close to the measured 

ones.   

Figure 4.2 shows the deuteron spectrum of the p(11B,d)10B reaction at the laboratory 

angle of 13°. The energy resolutions are about 640 keV for the ground state and the first 

excited state at 1.74 MeV. The other states cannot be evaluated because of low statistics. 

From Table 4.1, we see again that the kinematic broadening due to the angular resolution 

and the energy loss in target contribute most to the energy resolution. A smaller 

kinematic broadening and a thinner target will result in a better energy resolution. 

Figure 4.3 shows the deuteron spectrum of the p(10Be,d)9Be reaction at the laboratory 

angle of 15°. The energy resolution is 800 keV for the ground state.  The excited states 

cannot be distinguished because of low statistics.  Contributions to the energy resolution 

are also listed in Table 4.1.  

 
4.3 Extraction of Angular Differential Cross Sections 

Before the extraction of the angular differential cross sections, we need to know the 

beam transfer efficiency  and the total beam particles Nf par that hit the target. The beam 

transfer efficiency is measured in a normalization run at the beginning of each 

experiment, where the target is moved out of the beam line. The beam particle delivered 

before the target is measured by the BLT2 scintillator and the beam particle through the 

target is measured by the E1 scintillator of S800 spectrometer. The beam transfer 

efficiency is: 
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where RLT is the life time of the data acquisition system. The total beam particles that hit 

the target Npar are calculated by the summation over all the runs: 

∑ ⋅⋅=
i

i
LT

i
BLTpar fRNN 2                                       (4.3.2) 

where , and are the number of particle detected by the BLT2 scintillator and 

the life time of the data acquisition system for each experimental run, i.  

i
BLTN 2

i
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The angular differential cross section in the laboratory frame is obtained for each 

telescope individually: 
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where i denotes individual telescope, Lθ  is the angle in the laboratory frame, Nd is the 

number of deuterons detected in the interval of ±1.0° relative to Lθ ,  is the solid 

angle in the laboratory frame, and N

LdΩ

tar is the target thickness in number of hydrogen 

atoms per centimeter square. The statistical error for each telescope is calculated by 
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The average angular differential cross section and statistical error are obtained by 
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The angular differential cross section and statistical error in the center of mass are 
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where γ  is the ratio of  cmL dd ΩΩ / , m1 and m2 are the mass of projectile and target 

nuclei.  

For the p(13C,d)12C reaction, the angular differential cross sections to ground state 

and first excited state at 4.439MeV have been extracted. For the reaction of p(11B,d)10B  

and p(10Be,d)9Be,  only the angular differential cross sections to the ground state have 

been extracted because of the low statistics of the excited states. The data and the 

statistical errors are listed in Table 4.2.  

The open red symbols in Figure 4.4 show our measured angular differential cross 

sections of p(13C,d)12C (g.s.) reaction. It is compared to the published data of Ref. 

[Cam87] at proton energy of 41.3 MeV (solid red circles). There are additional data in 

Ref. [Sco70] at proton energy of 50 MeV. However, the latter set of data was published 

in arbitrary unit. We match Scott’s data [Sco70] at 12.1° to the data of this measurement 

and get the normalization factor of 2.45. The three sets of data show fairly good 

agreement especially when the difference in beam energies is taken into consideration. 
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Figure 4.5 shows the comparison of the differential cross section of p(13C,d)12C to the 

first excited state from our measurement (open circle),  data of ref. [Cam87] (closed red 

circles), and data from ref [Sco70] (diamonds) with the same normalization factor of 

2.45. Again, our data agree with the past measurements fairly well suggesting that the 

experimental procedures we used for measuring angular distributions for inverse 

kinematic reactions with high resolution strip detectors work rather well. 

Figure 4.6 shows the angular differential cross sections of p(11B,d)10B (g.s.). 

Unfortunately, the 11B data were taken with relatively short time so that the total statistics 

we have collected are low. Only telescopes 1, 2, 3, and 7 yield significant counts to the 

measurements. The measured data have large error bars. 

Figure 4.7 shows the angular differential cross section of p(10Be,d)9Be to the ground 

state. However, we have problem with the absolute normalization. In this particular 

reaction, the S800 trigger some time did not fire. When that happens, the LASSA trigger 

fired alone but with a downscale factor of 5. We have to add the events by S800 trigger 

together with 5 times of the events by LASSA trigger. This problem only happened in the 

beam of 10Be. We still do not understand the reason of this problem thus there are 

unresolved questions about the absolute value of the cross section.  
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Figure 4.1: Deuteron energy spectrum of the p(13C,d)12C reaction at the laboratory angle 
of 19° measured by telescope 7. 
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Figure 4.2: Deuteron energy spectrum of p(11B,d)10B reaction at the laboratory angle of 
13° measured by telescope 7. 
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Figure 4.3: Deuteron energy spectrum of p(10Be,d)9Be reaction at the laboratory angle of 
15° measured by telescope 7. 
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Table 4.1: Contributions  to the energy resolution of the single neutron pickup reactions in inverse kinematics. 

 

 Beam 
 
 

Level 
(MeV) 

 

 Level 
width 
Γ 

(eV) 

 θ Lab 

 
 

Energy loss 
in target 
∆E d-tar 
(keV) 

Energy 
straggling in 

SnPb foil 
∆E foil 
(keV) 

Energy 
broadening 

∆E θ 
(keV) 

Estimated 
FWHM in 
Lab. frame

∆E L 
(keV) 

Estimated 
FWHM in 

center of mass
∆E cm 
(keV) 

Measured 
FWHM in 

center of mass
∆E exp 
(keV) 

13C         0.0 (0+) 0.0 19.0 305 33 195 364 672 800

 4.439 (2+) 0.01        19.0 257 40 263 370 586 800

11B         0.0 (3+) 0.0 13.0 178 38 165 246 417 640

 1.74 (0+) 0.09        13.0 164 40 187 252 398 640

10Be 0.0 ( −

2
3 ) 0.0        15.0 291 35 161 334 610 800
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Table 4.2 Experimental angular differential cross sections and statistical errors 

 

(a) (b) 

p(13C,d)12C, Ex= 0.0 MeV p(13C,d)12C, Ex= 4.439 MeV 

(deg)
cmθ

 
)/( srmb

d
d
Ω
σ

 
(deg)

cmθ
 

 
)/( srmb

d
d
Ω
σ

 
)/( srmb

d
d
Ω

∆
σ

4.0 11.54 1.07 7.5 7.19 1.04 
5.2 11.48 1.19 8.9 8.74  1.51 
6.4 11.88 1.59 10.4 9.54 0.45 
7.7 11.09 1.80 11.9  9.20  0.40 
8.9 10.07 0.58 13.6 8.33 0.45 
10.2 9.60 0.49 15.3 7.35 0.31 
11.6 8.70 0.61 17.1  6.08 0.27 
13.0 7.85 0.45 19.1 4.87 0.26 
14.5 6.68 0.41 
16.1 5.39 0.37 

 

 

 

(c) (d) 

p(11B,d)10B, Ex= 0.0 MeV p(10Be,d)9Be, Ex= 0.0 MeV 

(deg)
cmθ

 
 

)/( srmb
d
d
Ω
σ

  
(deg)

cmθ
 

 
)/( srmb

d
d
Ω
σ

  

6.8 6.12 1.49 3.2 27.40 5.27 
8.4 6.73 1.28 4.4  27.06 4.20 
10.0  7.59 1.27 7.1 27.95 6.04 
11.7  8.44 1.16 9.8  26.18 1.96 
13.5 7.45 1.2 11.3 22.91 3.51 
15.4 6.84 1.25 12.8  19.43 3.80 

14.4  16.68 1.70 
16.1  12.89 1.18 

 

 

17.9  10.98 1.24 

)/( srmb
d
d
Ω

∆
σ

)/( srmb
d
d
Ω

∆
σ

)/( srmb
d
d
Ω

∆
σ
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Figure 4.4: The measured angular differential cross section of p(13C,d)12C (g.s.) (open 
circle) reaction compared to the published data of Ref. [Cam87] (closed circle) and Ref. 
[Sco70] (diamonds). 
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Figure 4.5: The measured angular differential cross section of p(13C,d)12C (2+) (open 
circle) reaction compared to the published data of Ref. [Cam87] (closed circle) and Ref. 
[Sco70] (diamonds). 
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Figure 4.6: The measured angular differential cross section of p(11B,d)10B (g.s.) reaction. 
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Figure 4.7: The measured angular differential cross section of p(10Be,d)9Be (g.s.) 
reaction. 
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CHAPTER 5   
 
EXTRACTION OF SPECTROSCOPIC FACTORS  

 
5.1   Overview 

 
Single-nucleon transfer reactions, such as the (d,p) and (p,d) processes, have been 

used extensively to study the spectroscopy of nuclei [But51, Mac60, Aus70, Mac74, 

Sat83, Cat02], in particular for the extraction of single-nucleon spectroscopic factors 

(SF). The SF is obtained by taking the ratio of the measured cross section to that 

calculated using a reaction model [Mac60, Mac74]. Theoretically, the spectroscopic 

factor can be considered as the overlap integral between the initial and final state of the 

target nuclei and yield information on the occupancy of a given single-particle orbit 

[Mac60, Mac74, Sat83].  

The properties of rare isotopes far away from the valley of stability are very important 

in the study of astrophysics and in the understanding of how heavy elements are created 

in the universe. Spectroscopic information about the orbits of the valence nucleons in 

these unstable nuclei have led to novel and surprising properties for the corresponding 

unstable nuclear states [Han95, Mad01]. Due to their short life time, transfer reactions in 

inverse kinematics with rare nuclei as projectiles are the optimal way to study these 

nuclei [Cat02] and they are becoming a viable tool to explore single-particle states in 

neutron- and proton-rich nuclei [For99, Win01, Han01, Cat02, Han03]. However, since 

rare isotope beam intensities remain very much less than that of stable beams, and the 

history and experience of the spectroscopy of rare isotopes is much shorter, it is critical to 
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understand the limitations of transfer reaction theory by selectively re-examining the 

consistency of more precise measurements made with intense light-ion beams. 

It is well documented that large uncertainties have been associated with the extraction 

of spectroscopic factors. In a systematic compilation of spectroscopic factors for sd-shell 

nuclei, Endt [End77] noted that very different values of the spectroscopic factors arise 

from different analyses and/or experiments. By examining a large amount of data, and 

using consistency checks when available, Endt extracted an error of about 25% for 

individual spectroscopic factor for the sd-shell. The uncertainty increases to 50% if only 

(p,d) and (d,p) transfer reactions are used. However, this analysis, performed in 1977 and 

limited to heavy nuclei with A between 21 to 44, did not provide the systematic 

uncertainties associated with the method and relied heavily on the analyses of different 

authors. To assess the systematic uncertainties associated with the extraction of 

spectroscopic factors using a standardized procedure, we re-analyze the reaction of 

12C(d,p)13C(g.s.) and its inverse reaction, 13C(p,d)12C(g.s.), measured over a range of 

incident energies from 12 MeV to 60 MeV from the published literatures [Liu04]. 

 

5.2  12C(d,p)13C (g.s.) Reaction  
  

 
There are published angular distributions for the 12C(d,p)13C reaction at incident 

deuteron energies from 0.4 to 56 MeV. Until now, spectroscopic factors have been 

extracted from only a subset of these experiments. The associated analyses relied mainly 

on distorted-waves Born approximation (DWBA) calculations, but with no consistent 

choice of input parameters. The published 12C(d,p)13C (g.s.) spectroscopic factors are 
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listed in Table 5.1 and shown by closed points in Figure 5.1 as a function of the incident 

deuteron energy. For comparison, the published spectroscopic factors for the reaction of 

13C(p,d)12C (g.s.), to be discussed in Section 5.3, are shown by open points as a function 

of the equivalent incident deuteron energy. The values fluctuate from 0.3 to 1.4 with no 

evident correlation with incident energies. In some experiments, multiple values were 

deduced from different optical model parameter sets or different theories. In these cases 

the higher values are shown as squares in Figure 5.1. The dashed line shows the 

theoretical prediction (0.62) of the Cohen and Kurath shell model calculation [Coh67]. 

Large fluctuations in the data highlight the problem of extracting of a meaningful 

empirical spectroscopic factor that can be compared to theoretical value.  

Our calculations use a modified version of the code TWOFNR [Iga77]. All 

calculations include the local energy approximation (LEA) for finite range effects 

[But64] using the zero-range strength (D0) and range (β) parameter of the Reid Soft core 

3S1-3D1 neutron-proton interaction [Knu75]. For simplicity, no spin-orbit coupling is 

included as explained in Section 2.3.1.5. Non-locality corrections [Per62] are included in 

the proton and deuteron channels. All the parameters are listed in Table 2.7.   

We first perform calculations where both the exit channel proton and the entrance 

channel Johnson-Soper (JS) adiabatic potentials using the JLM nucleon-target optical 

potentials [Pet85]. These are calculated by folding the density-dependent JLM nucleon-

nucleon effective interaction [Jeu77], assumed to have a Gaussian form factor of range 1 

fm [Mel83], with the assumed target matter density in the mid-point local-density 

approximation [Mel83]. The matter density distribution for both 12C and 13C are 

evaluated assuming the modified Harmonic oscillator density parameters (α=1.247 fm, 
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a=1.649 fm for 12C; α=1.403 fm, a=1.635 fm for 13C) compiled in Ref. [Dej74]. The 

corresponding root-mean-square (rms) charge radii are 2.46 fm and 2.44 fm for 12C and 

13C respectively. The resulting real and imaginary parts of the nucleon potentials are 

scaled by the factors λv=1.0 and λw=0.8, respectively, obtained from a systematic study 

of light nuclei [Pet85].  

The spectroscopic factor is extracted by fitting the theory to the data at the first peak 

in the angular distribution, since the backward angle data are more sensitive to the effects 

of inelastic couplings and other higher-order effects. To be consistent, the spectroscopic 

factors are extracted by minimizing χ2, including only angular points that are (i) within 

30% of the maximum yield at the predicted angle and (ii) at θcm< 30°.  

In the present analyses we consider measured angular distributions for the reactions 

of 12C(d,p)13C (g.s.) over a range of incident energies from 7 MeV to 56 MeV. The 

calculated angular distributions normalized by the extracted spectroscopic factors are 

shown as solid lines in Figure 5.2. Each is displaced by a factor of 10 for ease of 

presentation, the displacement factor being unity for the angular distribution at 19.6 

MeV. The associated spectroscopic factors are listed in Table 5.1 and shown at the 

bottom of Figure 5.3 include re-analysis of the data shown in Figure 5.1 (closed circles) 

[Mor60, Zai61, Dan63, Sch67, Fet71, Dar73, Ohn86, Lan88] and of additional data sets 

(closed squares) [Mcg55, Mor60, Rob61, Ham61, Sch64]. Available data at Ed=28 and 

56 MeV are not included since their angular distributions do not include the first peak. 

The rise of the spectroscopic factors with decreasing energy below 12 MeV shown in 

Figure 5.3 has been observed before [Sch67] and has been attributed to the effect of 
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resonant structures in the elastic scattering of deuterons [Ohl63] and in the 12C(d,p)13C 

reactions [Eva63]. Excluding measurements affected by compound nucleus formation 

and resonances, the extracted spectroscopic factors for Ed=12-60 MeV provide an 

average spectroscopic factor of 0.58±0.09. In contrast, the published values in Figure 5.1 

vary from 0.3 to 1.5. Our consistent, theoretically motivated analyses thus reduce the 

fluctuations substantially.  

To find out whether the uncertainty comes from the accuracy in the measurements or 

from the calculations, we examine the consistency in different measurements at the same 

incident energy. Figure 5.4, 5.5, and 5.6 show the comparisons of the measurements of 

12C(d,p)13C reaction for deuteron energies at around 4.5 MeV, 12 MeV, and 15 MeV 

respectively. In Figure 5.4, the difference among the data is more than 30% in the region 

from 20° to 50° in the center of mass with no quoted error in the literatures. In Figure 5.5, 

the quoted error from Ref. [Sch67] and Ref. [Ham61] are 15% and 25% respectively. The 

difference among the data is close to 20% for the first peak from 10° to 30° in the center 

of mass. In Figure 5.6, the quoted error from Ref. [Ham61] and Ref. [Mcg55] are both 

20%. Ref. [Dar73] did not give error of the data. The difference in the region around 20 

deg in the center of mass is more than 20%. From the above analyses, the measured 

angular distributions do not agree to better than 20%. Thus the variations in the 

spectroscopic factors we obtained partly come from the uncertainties in the experimental 

measurements.     

To assess the stability of the above adiabatic three-body model calculations, we have 

repeated the analyses by replacing the JLM nucleon optical potentials everywhere with 

the Chapel-Hill (CH89) [Var91] global potential set. The calculated angular distributions 
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normalized by the spectroscopic factors are shown by the dotted curves in Figure 5.2. The 

spectroscopic factors are shown in the center of Figure 5.3. Overall, the values are quite 

similar, but consistently higher. The average spectroscopic factors is 0.71±0.10. It should 

be noted that light nuclei are not included in the extraction of the CH89 potential 

evaluation.  Thus it is remarkable that the CH89 potential seems to work well.  

For a final comparison, we also analyzed the full data set within the DWBA 

formalism, neglecting the role of deuteron break-up channels. To remove energy-

dependent optical potential ambiguity, we used the CH89 and Daehnick [Dae80] global 

potentials for the proton and deuteron channels, respectively. The calculated angular 

distributions normalized by the spectroscopic factors are shown as dashed curves in 

Figure 5.2 and the deduced spectroscopic factors are plotted at the top of Figure 5.3. 

Again, the extracted values are more consistent than the published values; see Figure 5.1. 

The average value is 0.79±0.19. Comparisons with the JS adiabatic calculations suggest 

that neglect of the break-up channel within the DWBA is a significant contributing factor 

at high energies.  
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Table 5.1: List of references and spectroscopic factors for the 12C(d,p)13C (g.s.) reaction 

 

Reaction Ebeam  
(MeV) 

SF 
(Liter.) 

SF  
(JLM) 

SF 
(CH89) 

SF  
(DWBA) Ref. 

12C(d,p)13C (g.s.) 4 0.99 0.62 0.61 0.65 [Gal66] 
12C(d,p)13C (g.s.) 4.5 0.72 0.69 0.69 0.6 [Gal66] 
12C(d,p)13C (g.s.) 4.5  0.52 0.53 0.4 [Bon56] 

12C(d,p)13C (g.s.) 4.5 
0.55  
0.6 
0.8 

0.42 0.43 0.49 [Gur69] 

12C(d,p)13C (g.s.) 7.15 0.53 0.89 0.93 0.94 [Zai61] 
12C(d,p)13C (g.s.) 8.9  0.8 0.9 0.91 [Rob61] 
12C(d,p)13C (g.s.) 9.0 0.84 N/A N/A N/A [Smi63] 
12C(d,p)13C (g.s.) 10.2  0.68 0.79 0.81 [Ham61] 
12C(d,p)13C (g.s.) 11.8  0.61 0.74 0.77 [Sch64] 
12C(d,p)13C (g.s.) 12 1.15 0.50 0.63 0.68 [Lan88] 

12C(d,p)13C (g.s.) 12 

1.16  
0.64  
0.83  
0.85 

0.75 0.85 0.86 
[Sch67] 
[Dob70] 
[Gri75] 

12C(d,p)13C (g.s.) 12.4  0.63 0.74 0.78 [Ham61] 
12C(d,p)13C (g.s.) 14.7  0.61 0.74 0.79 [Ham61] 
12C(d,p)13C (g.s.) 14.8  0.64 0.75 0.78 [Mcg55] 
12C(d,p)13C (g.s.) 15 1.1  

1.4 0.53 0.67 0.74 [Dar73] 
12C(d,p)13C (g.s.) 16.6 0.85 0.48 0.59 0.66 [Mor60] 
12C(d,p)13C (g.s.) 19.6  0.52 0.65 0.76 [Mor60] 
12C(d,p)13C (g.s.) 25.9 0.7 0.59 0.69 0.79 [Dan63] 
12C(d,p)13C (g.s.) 28  0.82 1.06 1.49 [Slo62] 
12C(d,p)13C (g.s.) 30 0.77 0.52 0.65 0.79 [Ohn86] 
12C(d,p)13C (g.s.) 51 0.95 0.66 0.82 1.06 [Fet71] 

[Gol72] 

12C(d,p)13C (g.s.) 56 
0.63  
0.75  
1.26 

1.05 1.26 1.44 [Hat84] 

(average)   0.58 
±0.09 

0.71 
±0.10 

0.79 
±0.19 
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Figure 5.1: Spectroscopic factors for 12C(d,p)13C (g.s.) and 13C(p,d)12C (g.s.) reactions 
extracted from the literatures (see Table 5.1 and Table 5.2) . 
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Figure 5.2: Angular distributions for 12C(d,p)13C (g.s.) reactions for beam energies from 
7 to 56 MeV: solid lines present ADBA (JLM); dotted lines present ADBA (CH89); 
dashed lines present DWBA. Each distribution is displaced by factor of 10 from adjacent 
distributions. The overall normalization factor is 1 for the 19.6 MeV data. References are 
listed in Table 5.1.   
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Figure 5.3: Extracted spectroscopic factors in the present work for 12C(d,p)13C (g.s.), 
13C(p,d)12C (g.s.), and p(13C,d)12C (g.s.) reactions. The dashed lines represent the shell 
model prediction of Cohen and Kurath [Coh67] of 0.62. See text for detail explanation. 
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Figure 5.4: Comparison of the existing measurements of 12C(d,p)13C (g.s.) reaction for 
deuteron energy at 4.5 MeV, a [Gur69], b [Gal66], and c [Bon56].  

  

 

 167



 

 

 

 

 

 
Figure 5.5: Comparison of the existing measurements of 12C(d,p)13C (g.s.) reaction for 
deuteron energies at 11.8 MeV [Sch64], 12.0 MeV a [Lan88], 12.0 MeV b [Sch67], and 
12.4 MeV [Ham61]. 
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Figure 5.6: Comparison of the existing measurements of 12C(d,p)13C (g.s.) reaction for 
deuteron energies at 14.7 MeV [Ham61], 14.8 MeV [Mcg55], and 15 MeV [Dar73]. 

 169



5.3 13C(p,d)12C (g.s.) and p(13C,d)12C (g.s.) Reactions 

 
Systematic analyses are performed to the measurements of 13C(p,d)12C reaction to the 

ground state [Toy95, Cam87, Tak68, Hos80] listed in Table 5.2. The proton energies 

range from 35 MeV to 65 MeV. Same parameters listed in Table 2.7 and same procedure 

as described in section 5.2 are employed.    

The data and calculations multiplied by the corresponding spectroscopic factors listed 

in Table 5.2 are shown in Figure 5.7.  The angular distributions at 35 MeV, 41.3 MeV, 

and 65.0 MeV do not have data at forward angles. These data without the first peak may 

not give reliable SF. The data at 55.0 MeV have data at forward angles but the shape is 

different from that of the calculations. The extracted SF at 65.0 MeV is almost twice the 

expected value. Thus the data at 65.0 MeV may not be correct. The extracted SF from the 

data at 35.0 MeV, 41.3 MeV, and 55.0 MeV are plotted in Figure 5.3 as open circle 

points. As the existing measurements do not give reliable SF, a new measurement to 

cover the first peak in inverse kinematics is desirable.   

 The data and calculations for the inverse kinematic reaction of p(13C,d)12C (g.s.) 

performed in the present work are plotted as the third set of data (open points) and lines 

in Figure 5.7 The extracted spectroscopic factors, as shown in open squares in Figure 5.3, 

are 0.74, 0.91, and 1.18 for ADBA (JLM), ADBA (CH89), and DWBA calculations, 

respectively. One possible reason that the (p,d) reactions give higher spectroscopic 

factors than the (d,p) reactions in Section 5.2 is that the (p,d) reactions are performed at 

higher energies. The overall averaged spectroscopic factors from all the (d,p) and (p,d) 

reactions are 0.62±0.09, 0.76±0.11, and 0.89±0.20 for ADBA (JLM), ADBA (CH), and 
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DWBA calculations, respectively. The ADBA calculations based on JLM potentials give 

the best result compared to theory. Again, the SF values from the DWBA calculations are 

higher. As the importance of the deuteron break-up effects has been demonstrated, we 

will not discuss the DWBA calculations in the remaining part of this chapter.   
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Figure 5.7:  Angular distributions for 13C(p,d)12C (g.s.) and p(13C,d)12C (g.s.) reactions 
for beam energies from 35 to 65 MeV: solid lines present ADBA (JLM); dotted lines 
present ADBA (CH89); dashed lines present DWBA. The calculations have been 
normalized by the spectroscopic factors. Each distribution is displaced by factor of 10 
from adjacent distributions. The overall normalization factor is 1 for the 65.0 MeV data. 

 

 172



 

 

 

 

 

Table 5.2: List of references and spectroscopic factors for the 13C(p,d)12C (g.s.) and  

p(13C,d)12C (g.s.) reactions 
 

 

Reaction Ep  
(MeV) 

SF  
(Liter.) 

SF  
(JLM) 

SF 
(CH89) 

SF 
(DWBA) Ref. 

13C(p,d)12C (g.s.) 35 
0.7  
0.8  
1.0 

0.66 0.85 1.16 [Toy95] 

13C(p,d)12C (g.s.) 41.3 0.91  
0.98 0.78 0.98 1.31 [Cam87] 

13C(p,d)12C (g.s.) 55 0.82 0.66 0.82 1.05 [Tak68] 

13C(p,d)12C (g.s.) 65 
0.26  
0.31  
0.43 

1.22 1.57 1.33 [Hos80] 

(average)   0.70 
±0.07 

0.88 
±0.09 

1.17 
±0.13  

p(13C,d)12C (g.s.) 48.3*  0.74 0.91 1.18  

 
* Equivalent proton energy 
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5.4    
13C(p,d)12C (2+) and p(13C,d)12C (2+) Reactions 

 
Theoretically the transferred neutron in the reaction of 13C(p,d)12C to the first excited 

state 2+ at 4.439MeV of 12C is predicted to be in pure 1p3/2 orbit [Cam87]. The 

theoretical spectroscopic factor from Cohen and Kurath [Coh67] is 1.12. This clearly 

identified state provides another opportunity to test our strategy to extract the SF.  

Systematic analyses are performed to the existing measurements of 13C(p,d)12C 

reaction to the first excited state [Toy95, Cam87, Tak68]. The proton energies range from 

35 MeV to 65 MeV. The same procedure as described in section 5.2 is employed.   

The data and calculations for the present measurement of p(13C,d)12C* (4.439MeV) 

are plotted as the third set (open points) in Figure 5.8 together with the data (closed 

points) from the literatures [Toy95, Cam87, Tak68]. Among the published data, only the 

data at 55.0MeV have reasonable coverage at forward angles. The data at 35.0 MeV and 

41.3 MeV are not reliable since they did not include the first peak. However, the 

extracted spectroscopic factors by fitting the slope of these two data sets may provide 

consistent checks. The extracted spectroscopic factors are listed in Table 5.3 and plotted 

in Figure 5.9. The averaged spectroscopic factors from ADBA calculations based on JLM 

potentials and CH89 potentials are 0.92±0.09 and 1.08±0.13, respectively. The extracted 

SF for present measurement are 1.03 and 1.2 from ADBA(JLM) and ADBA(CH89), 

respectively. These values are listed in Table 5.3. The SF values from CH89 potentials 

are usually higher than that from JLM potentials.  
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Figure 5.8: Calculations for reactions of 13C(p,d)12C* (4.439MeV) and p(13C,d)12C* 
(4.439MeV) [Toy95, Cam87, Tak68]; solid lines present ADBA (JLM); dotted lines 
present ADBA (CH89). The calculations have been normalized by the spectroscopic 
factors. Each distribution is displaced by factor of 10 from adjacent distributions. The 
overall normalization factor is 1 for the 55.0 MeV data. 
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Table 5.3: Extracted spectroscopic factors of the 1p3/2 neutron from the 13C(p,d)12C (2+) 
and p(13C,d)12C (2+) reactions. 

 

 
 

Reaction 

Proton 
energy 
(MeV) 

SF 
ADBA 
(JLM) 

SF 
ADBA 
(CH89) 

Ref. 

13C(p,d)12C* (2+) 35 0.92 1.08 [Toy95] 
13C(p,d)12C* (2+) 41.3 1.01 1.2 [Cam87] 
13C(p,d)12C* (2+) 55 0.84 0.95 [Tak68] 

(average)  (0.92±0.09) (1.08±0.13)  

p(13C,d)12C* (2+) 48.3* 1.03 1.2  

 

 

 

 

 

 

 

* Equivalent proton energy   
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Figure 5.9: Extracted spectroscopic factors of the reactions 13C(p,d)12C* (4.439MeV) 
(circle) and p(13C,d)12C* (4.439MeV) (square). The dashed lines represent the shell 
model prediction of 1.12 by Cohen and Kurath [Coh67].    
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5.4 10B(d,p)11B (g.s.), 11B(p,d)10B (g.s.), and  

            p(11B,d)10B (g.s.) Reactions 

 
Systematic analyses are performed for the reaction of 11B(p,d)10B (g.s.) [Leg63] 

[Kul68] [Slo62] and its inverse reaction of 10B(d,p)11B (g.s.) [Hin62] [Sch67] [Bar65].  

The transferred neutron is in 1p3/2 orbit and its form factor is plotted in Figure 2.23. The 

theoretical spectroscopic factor from the shell model is 1.09 [Coh67]. Applying the 

consistent procedure as described above, the ADBA calculations are performed based on 

CH89 and JLM potentials respectively. The modified harmonic oscillator densities 

(α=0.837 fm, a=1.71 fm for 10B; α=0.811 fm, a=1.69 fm for 11B) compiled in Ref. 

[Dej74] are used in the JLM potentials. 

The data and calculations are shown in Figure 5.10 for the (d,p) reactions and in 

Figure 5.11 for the (p,d) reactions, respectively. The ADBA calculations based on CH89 

and JLM potentials give similar results. The spectroscopic factors have been extracted by 

fitting the first peaks as described in section 5.2. The results are listed in Table 5.4 and 

plotted in Figure 5.12. The spectroscopic factors from the published data present a trend 

with larger value at 30 MeV and lower value at lower (10 MeV) and higher (50 MeV) 

energies. Particularly, the measurement of 11B(p,d)10B at incident energy of 19 MeV (not 

plotted) gave a much higher SF compared to other experiments. In general, the absolute 

cross sections increase with incident energy. However, instead of lower cross section, the 

measured cross sections at 19 MeV are nearly twice as large as the cross sections 

measured at 33.6 MeV and 44.1 MeV. Thus, we believe this data set has normalization 
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problems and disregard it. The average value of the extracted SF except the data at 19 

MeV is 1.37±0.34 and 1.34±0.31 by using potentials of JLM and CH89 respectively. 

The theoretical angular distribution calculations for the p(11B,d)10B reaction are 

shown in Figure 5.11 as open symbols. The spectroscopic factors calculated from ADBA 

based on JLM and CH89 potentials are 1.05 and 0.97 respectively. Due to low statistics, 

the data of this measurement have larger error bar. The statistical uncertainty of the 

extracted SF is 17.2% for both the JLM potential and CH89 potential. However we 

cannot determine systematic errors due to our concern about the absolute normalization 

of those cross sections. Some data from the S800 scintillator are missed. Although the 

data for present measurements seem reasonable, we are not sure the normalization is 

absolutely correct. 
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Figure 5.10: Calculations of 10B(d,p)11B (g.s.) reaction at 10.1 MeV [Hin62], 12.0 MeV 
[Sch67], 13.5 MeV [Bar65], and 28 MeV [Slo62]: solid lines present ADBA (JLM); 
dotted lines present ADBA (CH89). The calculations have been normalized by the 
spectroscopic factors. Each distribution is displaced by factor of 10 from adjacent 
distributions. The overall normalization factor is 1 for the 28.0 MeV data.   
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Figure 5.11: Calculations of 11B(p,d)10B (g.s.) (closed points) p(11B,d)10B (g.s.) (open 
points): solid lines present ADBA (JLM); dotted lines present ADBA (CH89). The 
calculations have been normalized by the spectroscopic factors. Each distribution is 
displaced by factor of 10 from adjacent distributions. The overall normalization factor is 
1 for the present data.  
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Table 5.4: Extracted spectroscopic factors of the 1p3/2 neutron from the reactions of  
11B(p,d)10B (g.s.), 10B(d,p)11B (g.s.), and p(11B,d)10B (g.s.) 

 

 
Reaction 

Beam 
energy 
(MeV) 

SF 
ADBA 
(JLM) 

SF 
ADBA 
(CH89) 

Ref. 

11B(p,d)10B (g.s.) 19 3.25 3.22 [Leg63] 
11B (p,d) 10B 

(g.s.) 
33.6 1.35 1.24 [Kul68] 

10B(d,p)11B (g.s.) 10.1 0.94 0.94 [Hin62] 

10B(d,p)11B (g.s.) 12 1.20 1.22 [Sch67] 

10B(d,p)11B (g.s.) 13.5 1.56 1.61 [Bar65] 

10B(d,p)11B (g.s.) 28 1.82 1.68 [Slo62] 

(average)  (1.37±0.34) (1.34±0.31)  

p(11B,d)10B (g.s.) 44.1* 1.05 0.97  

  
* Equivalent proton energy 
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Figure 5.12: Extracted spectroscopic factors for the reaction of p(11B,d)10B (g.s.) (open 
square), 11B(p,d)10B (g.s.) (open circle), and 10B(d,p)11B (g.s.) (closed circle). The 
dashed lines represent the shell model prediction of 1.09 by Cohen and Kurath [Coh67].   
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5.6   9Be(d,p)10Be (g.s.) and p(10Be,d)9Be (g.s.) Reactions 

 
Systematic analyses are performed on the angular distributions measured from the 

9Be(d,p)10Be reactions that were published in the literatures [Zel01, Gen00, Vas87, 

Sch64, Dar76, And74, Slo62].  The transferred neutron is in the 1p3/2 orbit and its form 

factor is shown in Figure 2.23. The SF value obtained from the theoretical prediction of 

shell model is 2.35 [Coh67]. The ADBA calculations are based on CH potentials as 

described in section 5.2. The JLM potential is not used since the nucleon radius 

information of 10Be is not available. The experimental data and calculations are shown in 

Figure 5.13.  The extracted spectroscopic factors are listed in Table 5.5 and plotted in 

Figure 5.14. The systematic studies do not give a consistent value of spectroscopic factor. 

The data from 6.0 MeV to 11.0 MeV came from one reference of [Gen00], which gave 

the spectroscopic factor value around 1.0 for deuteron energies from 7.0 MeV to 11.0 

MeV. The other data yield spectroscopic factor values from 0.97 to 2.59. There is big 

difference in the measured cross sections at 15 MeV and at 15.3 MeV, which give 

spectroscopic factor of 1.83 and 1.19 respectively at nearly the same energies. The 

average value (to give the same weight for different systems, only one set from Ref. 

[Gen00] at 11.0 MeV is included) is 1.40±0.41 with rather large uncertainty.  

The data and the calculations for the present measurement in the inverse kinematics 

of p(10Be,d)9Be are shown as open points in Figure 5.13. Our ADBA (CH89) calculation 

gives spectroscopic factor of 2.99, which is 27% higher than the theoretical value and 

nearly a factor of two higher than the values obtained from seven (d,p) reactions 

measured by different groups. Since we have problems in the absolute normalization as 
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discussed in Section 4.3, it is not clear if the discrepancies arise from problems in our 

measurements.   
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Figure 5.13: ADBA calculations based on CH89 potentials for the reactions of 
9Be(d,p)10Be (g.s.) (closed circle) [Zel01, Gen00, Vas87, Sch64, Dar76, And74, Slo62] 
and p(10Be,d)9Be (g.s.) (open circle). The calculations have been normalized by the 
spectroscopic factors. Each distribution in closed circle is displaced by factor of 10 from 
adjacent distributions. The overall normalization factor is 1 for the data at 11.0 MeV. The 
present data is reduced by a factor of 100. 
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Table 5.5: Extracted spectroscopic factors of the 1p3/2 neutron from the reactions of  
p(10Be,d)9Be (g.s.),   and 9Be(d,p)10Be (g.s.) 

 

Reaction 
Incident 
Energy 
(MeV) 

SF 
ADBA 
(CH89) 

Ref. 

9Be(d,p)10Be (g.s.) 6 2.05 [Gen00] 
9Be(d,p)10Be (g.s.) 6.5 1.43 [Gen00] 
9Be(d,p)10Be (g.s.) 7 1.3 [Gen00] 
9Be(d,p)10Be (g.s.) 7.5 1.04 [Gen00] 
9Be(d,p)10Be (g.s.) 8 1.12 [Gen00] 
9Be(d,p)10Be (g.s.) 8.5 1.01 [Gen00] 
9Be(d,p)10Be (g.s.) 9 0.97 [Gen00] 
9Be(d,p)10Be (g.s.) 9.5 1.01 [Gen00] 
9Be(d,p)10Be (g.s.) 10 1.07 [Gen00] 
9Be(d,p)10Be (g.s.) 10.5 1.08 [Gen00] 
9Be(d,p)10Be (g.s.) 11 1.03 [Gen00] 
9Be(d,p)10Be (g.s.) 11.8 1.44 [Sch64] 
9Be(d,p)10Be (g.s.) 12.5 1.29 [Vas87] 
9Be(d,p)10Be (g.s.) 15 1.83 [Dar76] 
9Be(d,p)10Be (g.s.) 15.3 1.19 [Zel01] 
9Be(d,p)10Be (g.s.) 17.3 0.97 [And74] 
9Be(d,p)10Be (g.s.) 28 2.07 [Slo62] 

(average)  (1.40±0.41)  
p(10Be,d)9Be (g.s.) 49.8* 2.99  

 

* Equivalent proton energy 
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Figure 5.14: Extracted spectroscopic factors for the reactions of p(10Be,d)9Be (g.s.) (open 
square),  and 9Be(d,p)10Be (g.s.) (closed circle). The dashed lines represent the shell 
model prediction of 2.35 by Cohen and Kurath [Coh67].   
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CHAPTER 6  

 
SUMMARY 

  
This experiment is originally designed to study the structure of the valence neutron of 

10Be and 11B by extracting the spectroscopic factors. The angular differential cross 

sections of (p,d) reactions on 10Be, 11B, and 13C are measured, wherein the reaction on 

13C is performed as a calibration system and later used as a systematic study to devise a 

strategy to extract spectroscopic factors using the (p,d) and (d,p) reactions. Since target of 

the radioactive nucleus 10Be is not available, the reaction is performed in inverse 

kinematics. The reactions on 11B and 13C are also performed in inversed kinematics to 

keep all the three experiments similar to reduce systematic errors and to learn about the 

new technique of using reverse kinematics of radioactive beams. All three secondary 

beams are produced by bombing a thick 9Be target with the 13C primary beam.  

This experiment provides a learning experience of how to study (p,d) transfer 

reactions using secondary beams. The characteristics of the reaction in inverse kinematics 

are analyzed in this work. The advantage of the reaction in inverse kinematics is that the 

emitted light particles can be easily detected at forward angles (Section 1.2). The 

disadvantage of the reaction in inverse kinematics is that the energy broadening requires 

high angular resolution of the detectors (Section 1.2). The contributions to the energy 

resolution are analyzed in Section 4.2, which states that thin target and high angular 
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resolution of the detectors are the essential keys to achieve high energy resolution for the 

reactions in inverse kinematics. 

The angular differential cross sections are measured for the reaction of p(13C,d)12C to 

the ground state (0+) and the first excited state (2+). The distributions are in good 

agreement with the published data in the literatures at adjacent energies (Section 5.3 and 

5.4). The extracted SFs are in good agreement with the theory expectation. This means 

that the experimental techniques are good and the strategy to extract the SF works fine. 

The angular differential cross sections are measured for the reaction of p(11B,d)10B to 

the ground state. The extracted SF is 1.05.  Past measurements give higher SF values 

even though this experiment in inverse kinematics presents the best agreement with the 

shell model prediction.    

The angular differential cross sections are measured for the reaction of p(10Be,d)9Be 

to the ground state. The extracted SF is 2.99, which is 27% higher than the theoretical 

value of 2.35. This value is not confirmed as we had problems in the beam normalization. 

Since the published data give lower values of spectroscopic factor, it is desirable to re-

measure the differential cross section. The measurements of the differential cross sections 

to the excited states of 10B and 9Be are not performed because of the low particle counts. 

Therefore higher intensity of 11B and 10Be beams, which are available from the new 

Coupled Cyclotron Facility, are desirable in future measurements.  

The energy resolution in this work is around 600 keV to 800 keV, which may not be 

high enough for the separation of some other excited states. Higher angular resolution 

achieved by placing the detector further away or by using smaller spacing of the strips is 
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desirable. This is currently under development in the construction of the HiRA (High 

Resolution Array) at NSCL.   

In the course of this study, we have developed the strategy to extract the 

spectroscopic factor by using a standard set of input parameters listed in Table 2.7 for the 

adiabatic deuteron breakup approximation (ADBA) calculations. We find that the 

Optical-Model Potential (OMP) obtained from fitting individual data of elastic scatterings 

do not give consistent and reliable spectroscopic factors due to the ambiguity of the 

OMP; however, global optical-model potentials for proton and deuteron give consistent 

good “relative” spectroscopic factors. The OMP based on the folding model and the 

effective nucleon-nucleus interactions such as CH89 and JLM potentials seem to give 

better agreement with data.  

Based on this work, specifically the analysis procedure provided, recent extraction of 

ground state neutron spectroscopic factors of 79 nuclei for elements ranging from Li to 

Cr [Tsa05]. These values are in consistent agreements with shell model predictions 

[Bro04]. Figure 6.1 shows the comparison of the extracted spectroscopic factors with the 

predictions of the modern shell model. Good agreements are achieved except for Ne, F, 

and Ti isotopes. Such agreement raises the possibility that the extracted spectroscopic 

factors are not only relative but absolute values. Furthermore, the agreement between the 

extracted values and the shell model predictions suggest that long-range n-n and n-core 

interactions can be described by modern day shell model. The disagreement between the 

spectroscopic factors extracted from transfer reactions and knockout reactions using the 

electron probe could be explained by the short-range nucleon-nucleon interactions since 

the electron probes the interior of the wave function where n-n interaction is more 
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important than that at the surface of the wave function where the transfer reactions are 

more sensitive. The present work has stimulated a lot of interest in the use of transfer 

reactions to extract spectroscopic factors, not only for rare nuclei but for stable nuclei as 

well.  
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Figure 6.1: Comparison of the extracted spectroscopic factors with the predictions of the modern 
shell model [Bro04] for 79 nuclei ranging from Li to Cr [Tsa05]. Good agreement with most 
isotopes except Ne, F, and Ti isotopes. 
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